BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38594530)

  • 1. Measurement of Phytochrome B Thermal Reversion Rates In Vivo.
    Klose C; Hiltbrunner A
    Methods Mol Biol; 2024; 2795():85-93. PubMed ID: 38594530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential phosphorylation of the N-terminal extension regulates phytochrome B signaling.
    Viczián A; Ádám É; Staudt AM; Lambert D; Klement E; Romero Montepaone S; Hiltbrunner A; Casal J; Schäfer E; Nagy F; Klose C
    New Phytol; 2020 Feb; 225(4):1635-1650. PubMed ID: 31596952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal Reversion of Plant Phytochromes.
    Klose C; Nagy F; Schäfer E
    Mol Plant; 2020 Mar; 13(3):386-397. PubMed ID: 31812690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vivo Spectroscopy.
    Klose C
    Methods Mol Biol; 2019; 2026():113-120. PubMed ID: 31317406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions Between phyB and PIF Proteins Alter Thermal Reversion Reactions in vitro.
    Smith RW; Helwig B; Westphal AH; Pel E; Borst JW; Fleck C
    Photochem Photobiol; 2017 Nov; 93(6):1525-1531. PubMed ID: 28503745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis.
    Medzihradszky M; Bindics J; Ádám É; Viczián A; Klement É; Lorrain S; Gyula P; Mérai Z; Fankhauser C; Medzihradszky KF; Kunkel T; Schäfer E; Nagy F
    Plant Cell; 2013 Feb; 25(2):535-44. PubMed ID: 23378619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic analysis of how phytochrome B dimerization determines its specificity.
    Klose C; Venezia F; Hussong A; Kircher S; Schäfer E; Fleck C
    Nat Plants; 2015 Jul; 1():15090. PubMed ID: 27250256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins.
    Remberg A; Ruddat A; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1998 Jul; 37(28):9983-90. PubMed ID: 9665703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor.
    Burgie ES; Bussell AN; Lye SH; Wang T; Hu W; McLoughlin KE; Weber EL; Li H; Vierstra RD
    Sci Rep; 2017 Oct; 7(1):13648. PubMed ID: 29057954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular shape under far-red light and red light-induced association of Arabidopsis phytochrome B.
    Oide M; Hikima T; Oroguchi T; Kato T; Yamaguchi Y; Yoshihara S; Yamamoto M; Nakasako M; Okajima K
    FEBS J; 2020 Apr; 287(8):1612-1625. PubMed ID: 31621187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence in red light responses associated with thermal reversion of phytochrome B between high- and low-latitude species.
    Ikeda H; Suzuki T; Oka Y; Gustafsson ALS; Brochmann C; Mochizuki N; Nagatani A
    New Phytol; 2021 Jul; 231(1):75-84. PubMed ID: 33817798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCH1 regulates light, temperature, and circadian signaling as a structural component of phytochrome B-photobodies in
    Huang H; McLoughlin KE; Sorkin ML; Burgie ES; Bindbeutel RK; Vierstra RD; Nusinow DA
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8603-8608. PubMed ID: 30948632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The system of phytochromes: photobiophysics and photobiochemistry in vivo.
    Sineshchekov VA
    Membr Cell Biol; 1998; 12(5):691-720. PubMed ID: 10379648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome B integrates light and temperature signals in Arabidopsis.
    Legris M; Klose C; Burgie ES; Rojas CC; Neme M; Hiltbrunner A; Wigge PA; Schäfer E; Vierstra RD; Casal JJ
    Science; 2016 Nov; 354(6314):897-900. PubMed ID: 27789798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the biliverdin cofactor in the Pfr state of bathy and prototypical phytochromes.
    Salewski J; Escobar FV; Kaminski S; von Stetten D; Keidel A; Rippers Y; Michael N; Scheerer P; Piwowarski P; Bartl F; Frankenberg-Dinkel N; Ringsdorf S; Gärtner W; Lamparter T; Mroginski MA; Hildebrandt P
    J Biol Chem; 2013 Jun; 288(23):16800-16814. PubMed ID: 23603902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence and photochemical characterization of phytochromes A and B in transgenic potato expressing Arabidopsis phytochrome B.
    Sineshchekov V; Ogorodnikova O; Thiele A; Gatz C
    J Photochem Photobiol B; 2000 Dec; 59(1-3):139-46. PubMed ID: 11332881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Darkness inhibits autokinase activity of bacterial bathy phytochromes.
    Huber C; Strack M; Schultheiß I; Pielage J; Mechler X; Hornbogen J; Diller R; Frankenberg-Dinkel N
    J Biol Chem; 2024 Apr; 300(4):107148. PubMed ID: 38462162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both subunits of the dimeric plant photoreceptor phytochrome require chromophore for stability of the far-red light-absorbing form.
    Hennig L; Schäfer E
    J Biol Chem; 2001 Mar; 276(11):7913-8. PubMed ID: 11106666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inverse dark reversion of phytochrome: An explanation.
    Kendrick RE; Spruit CJ
    Planta; 1974 Jan; 120(3):265-72. PubMed ID: 24442701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy.
    Ruddat A; Schmidt P; Gatz C; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1997 Jan; 36(1):103-11. PubMed ID: 8993323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.