These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38594943)

  • 21. Interference between DNA replication and transcription as a cause of genomic instability.
    Lin YL; Pasero P
    Curr Genomics; 2012 Mar; 13(1):65-73. PubMed ID: 22942676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Replication-transcription conflicts trigger extensive DNA degradation in Escherichia coli cells lacking RecBCD.
    Dimude JU; Midgley-Smith SL; Rudolph CJ
    DNA Repair (Amst); 2018 Oct; 70():37-48. PubMed ID: 30145455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Accelerated gene evolution through replication-transcription conflicts.
    Paul S; Million-Weaver S; Chattopadhyay S; Sokurenko E; Merrikh H
    Nature; 2013 Mar; 495(7442):512-5. PubMed ID: 23538833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops.
    Chappidi N; Nascakova Z; Boleslavska B; Zellweger R; Isik E; Andrs M; Menon S; Dobrovolna J; Balbo Pogliano C; Matos J; Porro A; Lopes M; Janscak P
    Mol Cell; 2020 Feb; 77(3):528-541.e8. PubMed ID: 31759821
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses.
    Hamperl S; Bocek MJ; Saldivar JC; Swigut T; Cimprich KA
    Cell; 2017 Aug; 170(4):774-786.e19. PubMed ID: 28802045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcription-replication conflicts at chromosomal fragile sites-consequences in M phase and beyond.
    Oestergaard VH; Lisby M
    Chromosoma; 2017 Mar; 126(2):213-222. PubMed ID: 27796495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of chromatin at transcription-replication conflicts as a genome safeguard.
    Bayona-Feliu A; Aguilera A
    Biochem Soc Trans; 2021 Dec; 49(6):2727-2736. PubMed ID: 34821364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RAD51 protects human cells from transcription-replication conflicts.
    Bhowmick R; Lerdrup M; Gadi SA; Rossetti GG; Singh MI; Liu Y; Halazonetis TD; Hickson ID
    Mol Cell; 2022 Sep; 82(18):3366-3381.e9. PubMed ID: 36002000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laboratory Evolution Experiments Help Identify a Predominant Region of Constitutive Stable DNA Replication Initiation.
    Veetil RT; Malhotra N; Dubey A; Seshasayee ASN
    mSphere; 2020 Feb; 5(1):. PubMed ID: 32102945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA Replication-Transcription Conflicts Do Not Significantly Contribute to Spontaneous Mutations Due to Replication Errors in Escherichia coli.
    Foster PL; Niccum BA; Lee H
    mBio; 2021 Oct; 12(5):e0250321. PubMed ID: 34634932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrator facilitates RNAPII removal to prevent transcription-replication collisions and genome instability.
    Bhowmick R; Mehta KPM; Lerdrup M; Cortez D
    Mol Cell; 2023 Jul; 83(13):2357-2366.e8. PubMed ID: 37295432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topoisomerase I prevents transcription-replication conflicts at transcription termination sites.
    Liu Y; Lin YL; Pasero P; Chen CL
    Mol Cell Oncol; 2020 Dec; 8(1):1843951. PubMed ID: 33553603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DDX17 helicase promotes resolution of R-loop-mediated transcription-replication conflicts in human cells.
    Boleslavska B; Oravetzova A; Shukla K; Nascakova Z; Ibini ON; Hasanova Z; Andrs M; Kanagaraj R; Dobrovolna J; Janscak P
    Nucleic Acids Res; 2022 Nov; 50(21):12274-12290. PubMed ID: 36453994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts.
    Chang EY; Tsai S; Aristizabal MJ; Wells JP; Coulombe Y; Busatto FF; Chan YA; Kumar A; Dan Zhu Y; Wang AY; Fournier LA; Hieter P; Kobor MS; Masson JY; Stirling PC
    Nat Commun; 2019 Sep; 10(1):4265. PubMed ID: 31537797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The nature of mutations induced by replication–transcription collisions.
    Sankar TS; Wastuwidyaningtyas BD; Dong Y; Lewis SA; Wang JD
    Nature; 2016 Jul; 535(7610):178-81. PubMed ID: 27362223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The enigmatic role of Mfd in replication-transcription conflicts in bacteria.
    Ragheb M; Merrikh H
    DNA Repair (Amst); 2019 Sep; 81():102659. PubMed ID: 31311770
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Too Much of a Good Thing: How Ectopic DNA Replication Affects Bacterial Replication Dynamics.
    Syeda AH; Dimude JU; Skovgaard O; Rudolph CJ
    Front Microbiol; 2020; 11():534. PubMed ID: 32351461
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The roles of replication-transcription conflict in mutagenesis and evolution of genome organization.
    Schroeder JW; Sankar TS; Wang JD; Simmons LA
    PLoS Genet; 2020 Aug; 16(8):e1008987. PubMed ID: 32853297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcription-Replication Collisions-A Series of Unfortunate Events.
    St Germain C; Zhao H; Barlow JH
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. R-Loops and Its Chro-Mates: The Strange Case of Dr. Jekyll and Mr. Hyde.
    Uruci S; Lo CSY; Wheeler D; Taneja N
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.