These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38595795)

  • 1. Linel2D-Net: A deep learning approach to solving 2D linear elastic boundary value problems on image domains.
    Maria Antony AN; Narisetti N; Gladilin E
    iScience; 2024 Apr; 27(4):109519. PubMed ID: 38595795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FDM data driven U-Net as a 2D Laplace PINN solver.
    Maria Antony AN; Narisetti N; Gladilin E
    Sci Rep; 2023 Jun; 13(1):9116. PubMed ID: 37277366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DeepGreen: deep learning of Green's functions for nonlinear boundary value problems.
    Gin CR; Shea DE; Brunton SL; Kutz JN
    Sci Rep; 2021 Nov; 11(1):21614. PubMed ID: 34732757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).
    Shao HC; Huang X; Folkert MR; Wang J; Zhang Y
    Med Phys; 2021 Dec; 48(12):7790-7805. PubMed ID: 34632589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems.
    Ying W; Henriquez CS
    J Comput Phys; 2007 Dec; 227(2):1046-1074. PubMed ID: 23519600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground-truth-free deep learning for artefacts reduction in 2D radial cardiac cine MRI using a synthetically generated dataset.
    Chen D; Schaeffter T; Kolbitsch C; Kofler A
    Phys Med Biol; 2021 Apr; 66(9):. PubMed ID: 33770783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions.
    McFall KS; Mahan JR
    IEEE Trans Neural Netw; 2009 Aug; 20(8):1221-33. PubMed ID: 19497815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A General Deep Learning Method for Computing Molecular Parameters of a Viscoelastic Constitutive Model by Solving an Inverse Problem.
    Ye M; Fan YQ; Yuan XF
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated 3D U-net based segmentation of neonatal cerebral ventricles from 3D ultrasound images.
    Szentimrey Z; de Ribaupierre S; Fenster A; Ukwatta E
    Med Phys; 2022 Feb; 49(2):1034-1046. PubMed ID: 34958147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher order approximation in exponential form based on half-step grid-points for 2D quasilinear elliptic BVPs on a variant domain.
    Setia N; Mohanty RK
    MethodsX; 2023; 10():101980. PubMed ID: 36684468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal Solution Manifold Networks (USM-Nets): Non-Intrusive Mesh-Free Surrogate Models for Problems in Variable Domains.
    Regazzoni F; Pagani S; Quarteroni A
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 35993790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing neurodynamic approach with physics-informed neural networks for solving non-smooth convex optimization problems.
    Wu D; Lisser A
    Neural Netw; 2023 Nov; 168():419-430. PubMed ID: 37804745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An immersed boundary neural network for solving elliptic equations with singular forces on arbitrary domains.
    Balam RI; Hernandez-Lopez F; Trejo-Sánchez J; Zapata MU
    Math Biosci Eng; 2020 Nov; 18(1):22-56. PubMed ID: 33525079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI With Limited Training Data.
    Kofler A; Dewey M; Schaeffter T; Wald C; Kolbitsch C
    IEEE Trans Med Imaging; 2020 Mar; 39(3):703-717. PubMed ID: 31403407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging.
    Hammernik K; Küstner T; Yaman B; Huang Z; Rueckert D; Knoll F; Akçakaya M
    IEEE Signal Process Mag; 2023 Jan; 40(1):98-114. PubMed ID: 37304755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-efficient Bayesian learning for radial dynamic MR reconstruction.
    Brahma S; Kolbitsch C; Martin J; Schaeffter T; Kofler A
    Med Phys; 2023 Nov; 50(11):6955-6977. PubMed ID: 37367947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical modeling and computer simulation of the brain during neurosurgery.
    Miller K; Joldes GR; Bourantas G; Warfield SK; Hyde DE; Kikinis R; Wittek A
    Int J Numer Method Biomed Eng; 2019 Oct; 35(10):e3250. PubMed ID: 31400252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data-informed deep optimization.
    Zhang L; Xu ZJ; Zhang Y
    PLoS One; 2022; 17(6):e0270191. PubMed ID: 35737694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning a Model-Driven Variational Network for Deformable Image Registration.
    Jia X; Thorley A; Chen W; Qiu H; Shen L; Styles IB; Chang HJ; Leonardis A; de Marvao A; O'Regan DP; Rueckert D; Duan J
    IEEE Trans Med Imaging; 2022 Jan; 41(1):199-212. PubMed ID: 34460369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.