BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 38595814)

  • 1. Prostate cancer research: tools, cell types, and molecular targets.
    Liu AY
    Front Oncol; 2024; 14():1321694. PubMed ID: 38595814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The opposing action of stromal cell proenkephalin and stem cell transcription factors in prostate cancer differentiation.
    Liu AY
    BMC Cancer; 2021 Dec; 21(1):1335. PubMed ID: 34911496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lineage relationship between prostate adenocarcinoma and small cell carcinoma.
    Kanan AD; Corey E; Vêncio RZN; Ishwar A; Liu AY
    BMC Cancer; 2019 May; 19(1):518. PubMed ID: 31146720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming.
    Borges GT; Vêncio EF; Quek SI; Chen A; Salvanha DM; Vêncio RZ; Nguyen HM; Vessella RL; Cavanaugh C; Ware CB; Troisch P; Liu AY
    J Cell Physiol; 2016 Sep; 231(9):2040-7. PubMed ID: 26773436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AGR2, a unique tumor-associated antigen, is a promising candidate for antibody targeting.
    Liu AY; Kanan AD; Radon TP; Shah S; Weeks ME; Foster JM; Sosabowski JK; Dumartin L; Crnogorac-Jurcevic T
    Oncotarget; 2019 Jul; 10(42):4276-4289. PubMed ID: 31303962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stromal mesenchyme cell genes of the human prostate and bladder.
    Goo YA; Goodlett DR; Pascal LE; Worthington KD; Vessella RL; True LD; Liu AY
    BMC Urol; 2005 Dec; 5():17. PubMed ID: 16343351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells.
    Moad M; Pal D; Hepburn AC; Williamson SC; Wilson L; Lako M; Armstrong L; Hayward SW; Franco OE; Cates JM; Fordham SE; Przyborski S; Carr-Wilkinson J; Robson CN; Heer R
    Eur Urol; 2013 Nov; 64(5):753-61. PubMed ID: 23582880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage relationship of prostate cancer cell types based on gene expression.
    Pascal LE; Vêncio RZ; Vessella RL; Ware CB; Vêncio EF; Denyer G; Liu AY
    BMC Med Genomics; 2011 May; 4():46. PubMed ID: 21605402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear reprogramming of luminal-like breast cancer cells generates Sox2-overexpressing cancer stem-like cellular states harboring transcriptional activation of the mTOR pathway.
    Corominas-Faja B; Cufí S; Oliveras-Ferraros C; Cuyàs E; López-Bonet E; Lupu R; Alarcón T; Vellon L; Iglesias JM; Leis O; Martín ÁG; Vazquez-Martin A; Menendez JA
    Cell Cycle; 2013 Sep; 12(18):3109-24. PubMed ID: 23974095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reprogramming of prostate cancer-associated stromal cells to embryonic stem-like.
    Vêncio EF; Nelson AM; Cavanaugh C; Ware CB; Milller DG; Garcia JC; Vêncio RZ; Loprieno MA; Liu AY
    Prostate; 2012 Sep; 72(13):1453-63. PubMed ID: 22314551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-stage induced differentiation of OCT4+/Nanog+ stem-like cells in lung adenocarcinoma.
    Li R; Huang J; Ma M; Lou Y; Zhang Y; Wu L; Chang DW; Zhao P; Dong Q; Wu X; Han B
    Oncotarget; 2016 Oct; 7(42):68360-68370. PubMed ID: 27588392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model.
    Bonkhoff H; Remberger K
    Prostate; 1996 Feb; 28(2):98-106. PubMed ID: 8604398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells.
    Wang D; Quan Y; Yan Q; Morales JE; Wetsel RA
    Stem Cells Transl Med; 2015 Oct; 4(10):1234-45. PubMed ID: 26285657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cloning and functional analysis of SCTF-1 encoding a C2H2-type Zinc finger protein from soybean].
    Song B; Wang PW; Fu YP; Fan XH; Xia HF; Gao W; Hong Y; Wang H; Zhang Z; Ma J
    Yi Chuan; 2012 Jun; 34(6):749-56. PubMed ID: 22698747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential Inductive Signaling of CD90 Prostate Cancer-Associated Fibroblasts Compared to Normal Tissue Stromal Mesenchyme Cells.
    Pascal LE; Ai J; Vêncio RZ; Vêncio EF; Zhou Y; Page LS; True LD; Wang Z; Liu AY
    Cancer Microenviron; 2011 Jan; 4(1):51-9. PubMed ID: 21505567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgen Deprivation Induces Reprogramming of Prostate Cancer Cells to Stem-Like Cells.
    Sánchez BG; Bort A; Vara-Ciruelos D; Díaz-Laviada I
    Cells; 2020 Jun; 9(6):. PubMed ID: 32531951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells.
    Bae KM; Su Z; Frye C; McClellan S; Allan RW; Andrejewski JT; Kelley V; Jorgensen M; Steindler DA; Vieweg J; Siemann DW
    J Urol; 2010 May; 183(5):2045-53. PubMed ID: 20303530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers.
    Sell S; Pierce GB
    Lab Invest; 1994 Jan; 70(1):6-22. PubMed ID: 8302019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CXCL12γ induces human prostate and mammary gland development.
    Jung Y; Kim JK; Lee E; Cackowski FC; Decker AM; Krebsbach PH; Taichman RS
    Prostate; 2020 Sep; 80(13):1145-1156. PubMed ID: 32659025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reprogramming hormone-sensitive prostate cancer to a lethal neuroendocrine cancer lineage by mitochondrial pyruvate carrier (MPC).
    Xu H; Liu Z; Gao D; Li P; Shen Y; Sun Y; Xu L; Song N; Wang Y; Zhan M; Gao X; Wang Z
    Mol Metab; 2022 May; 59():101466. PubMed ID: 35219875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.