BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38596654)

  • 1. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes.
    Mendonça-Reis E; Guimarães-Nobre CC; Teixeira-Alves LR; Miranda-Alves L; Berto-Junior C
    Anemia; 2024; 2024():7924015. PubMed ID: 38596654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bosentan attenuates sickle cell disease erythrocyte HbS polymerization and impaired deformability induced by endothelin-1.
    Rosa Teixeira-Alves L; Guimarães-Nobre CC; Mendonça-Reis E; Miranda-Alves L; Berto-Junior C
    Can J Physiol Pharmacol; 2023 Dec; 101(12):642-651. PubMed ID: 36821840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATR1 Angiotensin II Receptor Reduces Hemoglobin S Polymerization, Phosphatidylserine Exposure, and Increases Deformability of Sickle Cell Disease Erythrocytes.
    Guimarães-Nobre CC; Mendonça-Reis E; Teixeira-Alves LR; Miranda-Alves L; Berto-Junior C
    Cell Biochem Biophys; 2022 Dec; 80(4):711-721. PubMed ID: 36175813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane bending and sphingomyelinase-associated, sulfatide-dependent hypoxic adhesion of sickle mature erythrocytes.
    Goreke U; Kucukal E; Wang F; An R; Arnold N; Quinn E; Yuan C; Bode A; Hill A; Man Y; Hambley BC; Schilz R; Ginwalla M; Little JA; Gurkan UA
    Blood Adv; 2023 May; 7(10):2094-2104. PubMed ID: 36652689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
    Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GBT440 improves red blood cell deformability and reduces viscosity of sickle cell blood under deoxygenated conditions.
    Dufu K; Patel M; Oksenberg D; Cabrales P
    Clin Hemorheol Microcirc; 2018; 70(1):95-105. PubMed ID: 29660913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetAP2 inhibition modifies hemoglobin S to delay polymerization and improves blood flow in sickle cell disease.
    Demers M; Sturtevant S; Guertin KR; Gupta D; Desai K; Vieira BF; Li W; Hicks A; Ismail A; Gonçalves BP; Di Caprio G; Schonbrun E; Hansen S; Musayev FN; Safo MK; Wood DK; Higgins JM; Light DR
    Blood Adv; 2021 Mar; 5(5):1388-1402. PubMed ID: 33661300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling DEHP influence on hemoglobin S polymerization in sickle cell disease: Ex vivo, in vitro and in silico analysis.
    Camacho RA; Machado AV; de Oliveira Mendonça F; Teixeira-Alves LR; Guimarães-Nobre CC; Mendonça-Reis E; da Silva PF; Cardim-Pires TR; Miranda-Alves L; Berto-Junior C
    Toxicol In Vitro; 2024 Jun; 98():105832. PubMed ID: 38653437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic deformability of sickle red blood cells in microphysiological flow.
    Alapan Y; Matsuyama Y; Little JA; Gurkan UA
    Technology (Singap World Sci); 2016 Jun; 4(2):71-79. PubMed ID: 27437432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GBT021601 improves red blood cell health and the pathophysiology of sickle cell disease in a murine model.
    Dufu K; Alt C; Strutt S; Partridge J; Tang T; Siu V; Liao-Zou H; Rademacher P; Williams AT; Muller CR; Geng X; Pochron MP; Dang AN; Cabrales P; Li Z; Oksenberg D; Cathers BE
    Br J Haematol; 2023 Jul; 202(1):173-183. PubMed ID: 36960712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sickle cell disease pathophysiology.
    Noguchi CT; Schechter AN; Rodgers GP
    Baillieres Clin Haematol; 1993 Mar; 6(1):57-91. PubMed ID: 8353318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro exposure to hydroxyurea reduces sickle red blood cell deformability.
    Huang Z; Louderback JG; King SB; Ballas SK; Kim-Shapiro DB
    Am J Hematol; 2001 Jul; 67(3):151-6. PubMed ID: 11391710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic approach to study the effect of mechanical stress on erythrocytes in sickle cell disease.
    Lizarralde Iragorri MA; El Hoss S; Brousse V; Lefevre SD; Dussiot M; Xu T; Ferreira AR; Lamarre Y; Silva Pinto AC; Kashima S; Lapouméroulie C; Covas DT; Le Van Kim C; Colin Y; Elion J; Français O; Le Pioufle B; El Nemer W
    Lab Chip; 2018 Sep; 18(19):2975-2984. PubMed ID: 30168832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular and cellular pathophysiology of sickle cell anemia].
    Labie D; Elion J
    Pathol Biol (Paris); 1999 Jan; 47(1):7-12. PubMed ID: 10081773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sickle Cell Hemoglobin.
    Mandal AK; Mitra A; Das R
    Subcell Biochem; 2020; 94():297-322. PubMed ID: 32189305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Sickling During Controlled Automated Deoxygenation with Oxygen Gradient Ektacytometry.
    Rab MAE; van Oirschot BA; Bos J; Kanne CK; Sheehan VA; van Beers EJ; van Wijk R
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrite decreases sickle hemoglobin polymerization in vitro independently of methemoglobin formation.
    Almeida LEF; Smith ML; Kamimura S; Vogel S; de Souza Batista CM; Quezado ZMN
    Toxicol Appl Pharmacol; 2023 Aug; 473():116606. PubMed ID: 37336294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.