BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 38596654)

  • 41. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects.
    Kassa T; Strader MB; Nakagawa A; Zapol WM; Alayash AI
    Metallomics; 2017 Sep; 9(9):1260-1270. PubMed ID: 28770911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Blocking HbS Polymerization in SCD.
    Lettre G
    Cell; 2020 Mar; 180(5):819. PubMed ID: 32142671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pyruvate kinase activators: targeting red cell metabolism in sickle cell disease.
    Xu JZ; Vercellotti GM
    Hematology Am Soc Hematol Educ Program; 2023 Dec; 2023(1):107-113. PubMed ID: 38066891
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Qiang Y; Liu J; Dao M; Du E
    Lab Chip; 2021 Sep; 21(18):3458-3470. PubMed ID: 34378625
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free heme and the polymerization of sickle cell hemoglobin.
    Uzunova VV; Pan W; Galkin O; Vekilov PG
    Biophys J; 2010 Sep; 99(6):1976-85. PubMed ID: 20858444
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single Molecule Studies of the Diffusion of Band 3 in Sickle Cell Erythrocytes.
    Spector J; Kodippili GC; Ritchie K; Low PS
    PLoS One; 2016; 11(9):e0162514. PubMed ID: 27598991
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness.
    Connes P
    Clin Hemorheol Microcirc; 2024; 86(1-2):9-27. PubMed ID: 38073384
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance.
    Conran N; De Paula EV
    Haematologica; 2020 Oct; 105(10):2380-2390. PubMed ID: 33054078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ionophore-mediated swelling of erythrocytes as a therapeutic mechanism in sickle cell disease.
    Geisness AC; Azul M; Williams D; Szafraniec H; De Souza DC; Higgins JM; Wood DK
    Haematologica; 2022 Jun; 107(6):1438-1447. PubMed ID: 34706495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ineffective erythropoiesis in sickle cell disease: new insights and future implications.
    El Nemer W; Godard A; El Hoss S
    Curr Opin Hematol; 2021 May; 28(3):171-176. PubMed ID: 33631786
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The oral ferroportin inhibitor vamifeport improves hemodynamics in a mouse model of sickle cell disease.
    Nyffenegger N; Zennadi R; Kalleda N; Flace A; Ingoglia G; Buzzi RM; Doucerain C; Buehler PW; Schaer DJ; Dürrenberger F; Manolova V
    Blood; 2022 Aug; 140(7):769-781. PubMed ID: 35714304
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model.
    Quezado ZMN; Kamimura S; Smith M; Wang X; Heaven MR; Jana S; Vogel S; Zerfas P; Combs CA; Almeida LEF; Li Q; Quezado M; Horkayne-Szakaly I; Kosinski PA; Yu S; Kapadnis U; Kung C; Dang L; Wakim P; Eaton WA; Alayash AI; Thein SL
    Blood Cells Mol Dis; 2022 Jul; 95():102660. PubMed ID: 35366607
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Individual red blood cell nitric oxide production in sickle cell anemia: Nitric oxide production is increased and sickle shaped cells have unique morphologic change compared to discoid cells.
    Suriany S; Xu I; Liu H; Ulker P; Fernandez GE; Sposto R; Borzage M; Wenby R; Meiselman HJ; Forman HJ; Coates TD; Detterich JA
    Free Radic Biol Med; 2021 Aug; 171():143-155. PubMed ID: 33974976
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Clinical manifestations and erythrocyte adhesion to endothelium in sickle cell syndrome.
    Wautier JL; Galacteros F; Wautier MP; Pintigny D; Beuzard Y; Rosa J; Caen JP
    Am J Hematol; 1985 Jun; 19(2):121-30. PubMed ID: 4003384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic Reprogramming in Sickle Cell Diseases: Pathophysiology and Drug Discovery Opportunities.
    Alramadhani D; Aljahdali AS; Abdulmalik O; Pierce BD; Safo MK
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806451
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measurements of red cell deformability and hydration reflect HbF and HbA
    Parrow NL; Tu H; Nichols J; Violet PC; Pittman CA; Fitzhugh C; Fleming RE; Mohandas N; Tisdale JF; Levine M
    Blood Cells Mol Dis; 2017 Jun; 65():41-50. PubMed ID: 28472705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Sickle cell disease].
    Distelmaier L; Dührsen U; Dickerhoff R
    Internist (Berl); 2020 Jul; 61(7):754-758. PubMed ID: 32548653
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Whole blood viscosity and red blood cell adhesion: Potential biomarkers for targeted and curative therapies in sickle cell disease.
    Kucukal E; Man Y; Hill A; Liu S; Bode A; An R; Kadambi J; Little JA; Gurkan UA
    Am J Hematol; 2020 Nov; 95(11):1246-1256. PubMed ID: 32656816
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling sickle hemoglobin fibers as one chain of coarse-grained particles.
    Li H; Ha V; Lykotrafitis G
    J Biomech; 2012 Jul; 45(11):1947-51. PubMed ID: 22673758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.