These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38596674)

  • 1. Non-invasive prediction for pathologic complete response to neoadjuvant chemoimmunotherapy in lung cancer using CT-based deep learning: a multicenter study.
    Qu W; Chen C; Cai C; Gong M; Luo Q; Song Y; Yang M; Shi M
    Front Immunol; 2024; 15():1327779. PubMed ID: 38596674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [
    Yang M; Li X; Cai C; Liu C; Ma M; Qu W; Zhong S; Zheng E; Zhu H; Jin F; Shi H
    Eur Radiol; 2024 Jul; 34(7):4352-4363. PubMed ID: 38127071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study.
    She Y; He B; Wang F; Zhong Y; Wang T; Liu Z; Yang M; Yu B; Deng J; Sun X; Wu C; Hou L; Zhu Y; Yang Y; Hu H; Dong D; Chen C; Tian J
    EBioMedicine; 2022 Dec; 86():104364. PubMed ID: 36395737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy.
    Wang F; Yang H; Chen W; Ruan L; Jiang T; Cheng L; Jiang H; Fang M
    Curr Probl Cancer; 2024 Jun; 50():101098. PubMed ID: 38704949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CT-based quantification of intratumoral heterogeneity for predicting pathologic complete response to neoadjuvant immunochemotherapy in non-small cell lung cancer.
    Ye G; Wu G; Zhang C; Wang M; Liu H; Song E; Zhuang Y; Li K; Qi Y; Liao Y
    Front Immunol; 2024; 15():1414954. PubMed ID: 38933281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study.
    Ye G; Wu G; Qi Y; Li K; Wang M; Zhang C; Li F; Wee L; Dekker A; Han C; Liu Z; Liao Y; Shi Z
    J Immunother Cancer; 2024 Sep; 12(9):. PubMed ID: 39231545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delta-radiomics features for predicting the major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer.
    Han X; Wang M; Zheng Y; Wang N; Wu Y; Ding C; Jia X; Yang R; Geng M; Chen Z; Zhang S; Zhang K; Li Y; Liu J; Gu J; Liao Y; Fan J; Shi H
    Eur Radiol; 2024 Apr; 34(4):2716-2726. PubMed ID: 37736804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Whole slide image-based weakly supervised deep learning for predicting major pathological response in non-small cell lung cancer following neoadjuvant chemoimmunotherapy: a multicenter, retrospective, cohort study.
    Han D; Li H; Zheng X; Fu S; Wei R; Zhao Q; Liu C; Wang Z; Huang W; Hao S
    Front Immunol; 2024; 15():1453232. PubMed ID: 39372403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical utility of [
    Zhang L; E H; Huang J; Wu J; Li Q; Hou L; Li C; Dai C; Deng J; Yang M; Ma M; Ren Y; Luo Q; Zhao D; Chen C
    Eur Radiol; 2023 Dec; 33(12):8564-8572. PubMed ID: 37464112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of
    Zhuang F; Haoran E; Huang J; Wu J; Xu L; Zhang L; Li Q; Li C; Zhao Y; Yang M; Ma M; She Y; Chen H; Luo Q; Zhao D; Chen C
    Lung Cancer; 2023 Apr; 178():20-27. PubMed ID: 36764154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting pathological response to neoadjuvant or conversion chemoimmunotherapy in stage IB-III non-small cell lung cancer patients using radiomic features.
    Yang N; Yue HL; Zhang BH; Chen J; Chu Q; Wang JX; Yu XP; Jian L; Bin YW; Liu SY; Liu J; Zeng L; Yang HY; Zhou CH; Jiang WJ; Liu L; Zhang YC; Xiong Y; Wang Z
    Thorac Cancer; 2023 Oct; 14(28):2869-2876. PubMed ID: 37596822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model.
    Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y
    Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma.
    Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J
    Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT radiomics-based model for predicting TMB and immunotherapy response in non-small cell lung cancer.
    Wang J; Wang J; Huang X; Zhou Y; Qi J; Sun X; Nie J; Hu Z; Wang S; Hong B; Wang H
    BMC Med Imaging; 2024 Feb; 24(1):45. PubMed ID: 38360550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer-aided diagnosis of distal metastasis in non-small cell lung cancer by low-dose CT based radiomics and deep learning signatures.
    Song X; Duan X; He X; Wang Y; Li K; Deng B; Chen X; Wang Y; Li M; Shan H
    Radiol Med; 2024 Feb; 129(2):239-251. PubMed ID: 38214839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images.
    Gong J; Fu F; Ma X; Wang T; Ma X; You C; Zhang Y; Peng W; Chen H; Gu Y
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37972417
    [No Abstract]   [Full Text] [Related]  

  • 17. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features.
    Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y
    J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ct-based subregional radiomics using hand-crafted and deep learning features for prediction of therapeutic response to anti-PD1 therapy in NSCLC.
    Hu Y; Jiang T; Wang H; Song J; Yang Z; Wang Y; Su J; Jin M; Chang S; Deng K; Jiang W
    Phys Med; 2024 Jan; 117():103200. PubMed ID: 38160516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiparametric MRI for evaluation of pathological response to the neoadjuvant chemo-immunotherapy in resectable non-small-cell lung cancer.
    Bao X; Bian D; Yang X; Wang Z; Shang M; Jiang G; Shi J
    Eur Radiol; 2023 Dec; 33(12):9182-9193. PubMed ID: 37382618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients.
    Caii W; Wu X; Guo K; Chen Y; Shi Y; Chen J
    Cancer Immunol Immunother; 2024 Jun; 73(8):153. PubMed ID: 38833187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.