These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38597191)

  • 1. Massive ER protein disposal by reticulophagy receptors and selective disposal by TOLLIP.
    Hayashi Y; Ichijo H
    Autophagy; 2024 Sep; 20(9):2105-2106. PubMed ID: 38597191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TOLLIP acts as a cargo adaptor to promote lysosomal degradation of aberrant ER membrane proteins.
    Hayashi Y; Takatori S; Warsame WY; Tomita T; Fujisawa T; Ichijo H
    EMBO J; 2023 Dec; 42(23):e114272. PubMed ID: 37929762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease.
    Ferro-Novick S; Reggiori F; Brodsky JL
    Trends Biochem Sci; 2021 Aug; 46(8):630-639. PubMed ID: 33509650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RTN3L and CALCOCO1 function in parallel to maintain proteostasis in the endoplasmic reticulum.
    Kumar K; Chidambaram R; Parashar S; Ferro-Novick S
    Autophagy; 2024 Sep; 20(9):2067-2075. PubMed ID: 38818751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ER-phagy: mechanisms, regulation, and diseases connected to the lysosomal clearance of the endoplasmic reticulum.
    Reggiori F; Molinari M
    Physiol Rev; 2022 Jul; 102(3):1393-1448. PubMed ID: 35188422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNF185 regulates proteostasis in Ebolavirus infection by crosstalk between the calnexin cycle, ERAD, and reticulophagy.
    Zhang J; Wang B; Gao X; Peng C; Shan C; Johnson SF; Schwartz RC; Zheng YH
    Nat Commun; 2022 Oct; 13(1):6007. PubMed ID: 36224200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C53 is a cross-kingdom conserved reticulophagy receptor that bridges the gap betweenselective autophagy and ribosome stalling at the endoplasmic reticulum.
    Stephani M; Picchianti L; Dagdas Y
    Autophagy; 2021 Feb; 17(2):586-587. PubMed ID: 33164651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATI1 (ATG8-interacting protein 1) and ATI2 define a plant starvation-induced reticulophagy pathway and serve as MSBP1/MAPR5 cargo receptors.
    Wu J; Michaeli S; Picchianti L; Dagdas Y; Galili G; Peled-Zehavi H
    Autophagy; 2021 Nov; 17(11):3375-3388. PubMed ID: 33487099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epr1, a UPR-upregulated soluble autophagy receptor for reticulophagy.
    Zhao D; Du LL
    Autophagy; 2020 Nov; 16(11):2112-2113. PubMed ID: 32866412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of the endoplasmic reticulum plays a role in proteostasis.
    Parashar S; Ferro-Novick S
    Autophagy; 2022 Apr; 18(4):937-938. PubMed ID: 35100068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein disulfide isomerases (PDIs) negatively regulate ebolavirus structural glycoprotein expression in the endoplasmic reticulum (ER) via the autophagy-lysosomal pathway.
    Wang B; Zhang J; Liu X; Chai Q; Lu X; Yao X; Yang Z; Sun L; Johnson SF; Schwartz RC; Zheng YH
    Autophagy; 2022 Oct; 18(10):2350-2367. PubMed ID: 35130104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CALCOCO1 is a soluble reticulophagy receptor.
    Nthiga TM; Shrestha BK; Lamark T; Johansen T
    Autophagy; 2020 Sep; 16(9):1729-1731. PubMed ID: 32684083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteasomal and lysosomal clearance of faulty secretory proteins: ER-associated degradation (ERAD) and ER-to-lysosome-associated degradation (ERLAD) pathways.
    Fregno I; Molinari M
    Crit Rev Biochem Mol Biol; 2019 Apr; 54(2):153-163. PubMed ID: 31084437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCPG1, a cargo receptor required for reticulophagy and endoplasmic reticulum proteostasis.
    Smith MD; Wilkinson S
    Autophagy; 2018; 14(6):1090-1091. PubMed ID: 29916296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases.
    Kang JA; Jeon YJ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atg8-mediated super-assembly of Atg40 induces local ER remodeling in reticulophagy.
    Mochida K; Nakatogawa H
    Autophagy; 2020 Dec; 16(12):2299-2300. PubMed ID: 33043769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eat it right: ER-phagy and recovER-phagy.
    Loi M; Fregno I; Guerra C; Molinari M
    Biochem Soc Trans; 2018 Jun; 46(3):699-706. PubMed ID: 29802216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-On Imaging of Reticulophagy Enabled by an Acidity-Reporting Solvatochromic Probe.
    Zou X; Shi Y; Zhang S; Quan J; Han J; Han S
    Anal Chem; 2023 Aug; 95(30):11499-11509. PubMed ID: 37463355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitive imaging of Endoplasmic reticulum (ER) autophagy with an acidity-reporting ER-Tracker.
    Shi Y; Zou X; Zheng X; Wu Y; Han J; Han S
    Autophagy; 2023 Jul; 19(7):2015-2025. PubMed ID: 36625032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel reticulophagy receptor, Epr1: a bridge between the phagophore protein Atg8 and ER transmembrane VAP proteins.
    Yang Y; Klionsky DJ
    Autophagy; 2021 Mar; 17(3):597-598. PubMed ID: 33121335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.