These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38597294)

  • 81. NH
    Timofeev KL; Kulinich SA; Kharlamova TS
    Molecules; 2023 May; 28(9):. PubMed ID: 37175325
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A fluorometric assay for rapid enrichment and determination of bacteria by using zirconium-metal organic frameworks as both capture surface and signal amplification tag.
    Yang S; Guo Y; Fan J; Yang Y; Zuo C; Bai S; Sheng S; Li J; Xie G
    Mikrochim Acta; 2020 Feb; 187(3):188. PubMed ID: 32095939
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Morphology Regulation of UiO-66-2I Supporting Systematic Investigations of Shape-Dependent Catalytic Activity for Degradation of an Organophosphate Nerve Agent Simulant.
    Wu G; Zhang B; Zhang H; Zhang X; Hu X; Meng X; Wu J; Hou H
    Inorg Chem; 2024 Jul; 63(27):12658-12666. PubMed ID: 38916863
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Functionalized UiO-66-NH
    Wang T; Han L; Li X; Chen T; Wang S
    Front Chem; 2022; 10():962383. PubMed ID: 36118324
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Engineering of UiO-66-NH
    Tang J; Chen Y; Wang S; Zhang L
    J Colloid Interface Sci; 2021 Nov; 601():272-282. PubMed ID: 34082232
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration.
    Yan Y; Chu Y; Khan MA; Xia M; Shi M; Zhu S; Lei W; Wang F
    Sci Total Environ; 2022 Feb; 806(Pt 3):150652. PubMed ID: 34610397
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Studies on photocatalytic CO(2) reduction over NH2 -Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks.
    Sun D; Fu Y; Liu W; Ye L; Wang D; Yang L; Fu X; Li Z
    Chemistry; 2013 Oct; 19(42):14279-85. PubMed ID: 24038375
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Zirconium and Aluminum MOFs for Low-Pressure SO
    Brandt P; Xing SH; Liang J; Kurt G; Nuhnen A; Weingart O; Janiak C
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29137-29149. PubMed ID: 34115467
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Adsorptive removal of pharmaceutical pollutants by defective metal organic framework UiO-66: Insight into the contribution of defects.
    Zhuang S; Wang J
    Chemosphere; 2021 Oct; 281():130997. PubMed ID: 34289635
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Magnetic zirconium-based metal-organic frameworks for selective phosphate adsorption from water.
    Liu T; Zheng S; Yang L
    J Colloid Interface Sci; 2019 Sep; 552():134-141. PubMed ID: 31112809
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A Pyridyltriazol Functionalized Zirconium Metal-Organic Framework for Selective and Highly Efficient Adsorption of Palladium.
    Daliran S; Ghazagh-Miri M; Oveisi AR; Khajeh M; Navalón S; Âlvaro M; Ghaffari-Moghaddam M; Samareh Delarami H; García H
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25221-25232. PubMed ID: 32368890
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Removal of methyl orange wastewater by Ugi multicomponent reaction functionalized UiO-66-NS.
    Liu Q; Zang GL; Zhao Q
    Environ Sci Pollut Res Int; 2022 Nov; 29(51):76833-76846. PubMed ID: 35672634
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH
    Zhou C; Yuan B; Zhang S; Yang G; Lu L; Li H; Tao CA
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35549001
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine.
    Wang Z; Huang Y; Yang J; Li Y; Zhuang Q; Gu J
    Dalton Trans; 2017 Jun; 46(23):7412-7420. PubMed ID: 28548175
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A comparative study of confinement and layer modified Zr-based MOFs for the efficient removal of Cr(vi) from wastewater.
    Gao N; Guan Q; Kong Z
    RSC Adv; 2023 May; 13(22):15041-15054. PubMed ID: 37200691
    [TBL] [Abstract][Full Text] [Related]  

  • 96. High Capacity Arsenate Removal from Real Samples Using Dihydrotetrazine Decorated Zirconium-Based Metal-Organic Frameworks.
    Razavi SAA; Habibzadeh E; Morsali A
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12573-12585. PubMed ID: 38417102
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Solid-phase extraction and separation of indium with P
    Zeng WY; Huang M; Fu M
    J Environ Sci (China); 2023 May; 127():833-843. PubMed ID: 36522111
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Comparative study of synthesis methods and pH-dependent adsorption of methylene blue dye on UiO-66 and NH
    Daneshgar H; Sojdeh S; Salehi G; Edrisi M; Bagherzadeh M; Rabiee N
    Chemosphere; 2024 Apr; 353():141543. PubMed ID: 38447898
    [TBL] [Abstract][Full Text] [Related]  

  • 99. In situ growth of Zr-based metal-organic framework UiO-66-NH
    Tang P; Wang R; Chen Z
    Electrophoresis; 2018 Oct; 39(20):2619-2625. PubMed ID: 29660144
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phosphate group functionalized magnetic metal-organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution.
    Bi C; Zheng B; Yuan Y; Ning H; Gou W; Guo J; Chen L; Hou W; Li Y
    Sci Rep; 2021 Dec; 11(1):24328. PubMed ID: 34934053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.