These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38597694)

  • 1. Fabrication of Electronically Conductive Protein-Heme Nanowires for Power Harvesting.
    Travaglini L; Lam NT; Sawicki A; Cha HJ; Xu D; Micolich AP; Clark DS; Glover DJ
    Small; 2024 Jul; 20(29):e2311661. PubMed ID: 38597694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Determination of a Filamentous Chaperone to Fabricate Electronically Conductive Metalloprotein Nanowires.
    Chen YX; Ing NL; Wang F; Xu D; Sloan NB; Lam NT; Winter DL; Egelman EH; Hochbaum AI; Clark DS; Glover DJ
    ACS Nano; 2020 Jun; 14(6):6559-6569. PubMed ID: 32347705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An
    Ueki T; Walker DJF; Woodard TL; Nevin KP; Nonnenmann SS; Lovley DR
    ACS Synth Biol; 2020 Mar; 9(3):647-654. PubMed ID: 32125829
    [No Abstract]   [Full Text] [Related]  

  • 4. Direct Observation of Electrically Conductive Pili Emanating from
    Liu X; Walker DJF; Nonnenmann SS; Sun D; Lovley DR
    mBio; 2021 Aug; 12(4):e0220921. PubMed ID: 34465020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions.
    Lovley DR; Yao J
    Trends Biotechnol; 2021 Sep; 39(9):940-952. PubMed ID: 33419586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smooth and conductive DNA-templated Cu₂O nanowires: growth morphology, spectroscopic and electrical characterization.
    Hassanien R; Al-Said SA; Siller L; Little R; Wright NG; Houlton A; Horrocks BR
    Nanotechnology; 2012 Feb; 23(7):075601. PubMed ID: 22261265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.
    Lovley DR; Holmes DE
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32747429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically conductive bacterial nanowires in bisphosphonate-related osteonecrosis of the jaw biofilms.
    Wanger G; Gorby Y; El-Naggar MY; Yuzvinsky TD; Schaudinn C; Gorur A; Sedghizadeh PP
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2013 Jan; 115(1):71-8. PubMed ID: 23217537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA-templated nanowires: morphology and electrical conductivity.
    Watson SM; Pike AR; Pate J; Houlton A; Horrocks BR
    Nanoscale; 2014 Apr; 6(8):4027-37. PubMed ID: 24614835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Archaellum of Methanospirillum hungatei Is Electrically Conductive.
    Walker DJF; Martz E; Holmes DE; Zhou Z; Nonnenmann SS; Lovley DR
    mBio; 2019 Apr; 10(2):. PubMed ID: 30992355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic Biological Protein Nanowires with High Conductivity.
    Tan Y; Adhikari RY; Malvankar NS; Pi S; Ward JE; Woodard TL; Nevin KP; Xia Q; Tuominen MT; Lovley DR
    Small; 2016 Sep; 12(33):4481-5. PubMed ID: 27409066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale amorphization of GeTe nanowire with conductive atomic force microscope.
    Kim J
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7688-92. PubMed ID: 25942849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Dependent Electrical Conductance of DNA Origami Nanowires.
    Marrs J; Lu Q; Pan V; Ke Y; Hihath J
    Chembiochem; 2023 Jan; 24(2):e202200454. PubMed ID: 36342926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aeromonas hydrophila produces conductive nanowires.
    Castro L; Vera M; Muñoz JÁ; Blázquez ML; González F; Sand W; Ballester A
    Res Microbiol; 2014 Nov; 165(9):794-802. PubMed ID: 25283724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field stimulates production of highly conductive microbial OmcZ nanowires.
    Yalcin SE; O'Brien JP; Gu Y; Reiss K; Yi SM; Jain R; Srikanth V; Dahl PJ; Huynh W; Vu D; Acharya A; Chaudhuri S; Varga T; Batista VS; Malvankar NS
    Nat Chem Biol; 2020 Oct; 16(10):1136-1142. PubMed ID: 32807967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of an electronically conductive network through microporous scaffolds.
    Sebastian HB; Bryant SL
    J Colloid Interface Sci; 2017 Jun; 496():505-512. PubMed ID: 28259016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Nanowire Conductive Elastomers for Applications in Fully Polymeric Bioelectronic Devices
    Cuttaz EA; Chapman CAR; Goding JA; Vallejo-Giraldo C; Syed O; Green RA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():5872-5875. PubMed ID: 34892455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers.
    Wang F; Gu Y; O'Brien JP; Yi SM; Yalcin SE; Srikanth V; Shen C; Vu D; Ing NL; Hochbaum AI; Egelman EH; Malvankar NS
    Cell; 2019 Apr; 177(2):361-369.e10. PubMed ID: 30951668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spider-silk-based fabrication of nanogaps and wires.
    Morales P; Rapone B; Caruso M; Flammini D
    Nanotechnology; 2012 Jun; 23(25):255304. PubMed ID: 22652812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High density germanium nanowire assemblies: contact challenges and electrical characterization.
    Erts D; Polyakov B; Daly B; Morris MA; Ellingboe S; Boland J; Holmes JD
    J Phys Chem B; 2006 Jan; 110(2):820-6. PubMed ID: 16471609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.