These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 38597784)

  • 1. Performance of an Artificial Intelligence System for Breast Cancer Detection on Screening Mammograms from BreastScreen Norway.
    Larsen M; Olstad CF; Lee CI; Hovda T; Hoff SR; Martiniussen MA; Mikalsen KØ; Lund-Hanssen H; Solli HS; Silberhorn M; Sulheim ÅØ; Auensen S; Nygård JF; Hofvind S
    Radiol Artif Intell; 2024 May; 6(3):e230375. PubMed ID: 38597784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AI performance by mammographic density in a retrospective cohort study of 99,489 participants in BreastScreen Norway.
    Bergan MB; Larsen M; Moshina N; Bartsch H; Koch HW; Aase HS; Satybaldinov Z; Haldorsen IHS; Lee CI; Hofvind S
    Eur Radiol; 2024 Oct; 34(10):6298-6308. PubMed ID: 38528136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do AI markings on screening mammograms correspond to cancer location? An informed review of 270 breast cancer cases in BreastScreen Norway.
    Koch HW; Larsen M; Bartsch H; Martiniussen MA; Styr BM; Fagerheim S; Haldorsen IHS; Hofvind S
    Eur Radiol; 2024 Sep; 34(9):6158-6167. PubMed ID: 38396248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence in BreastScreen Norway: a retrospective analysis of a cancer-enriched sample including 1254 breast cancer cases.
    Koch HW; Larsen M; Bartsch H; Kurz KD; Hofvind S
    Eur Radiol; 2023 May; 33(5):3735-3743. PubMed ID: 36917260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AI Risk Score on Screening Mammograms Preceding Breast Cancer Diagnosis.
    Larsen M; Olstad CF; Koch HW; Martiniussen MA; Hoff SR; Lund-Hanssen H; Solli HS; Mikalsen KØ; Auensen S; Nygård J; Lång K; Chen Y; Hofvind S
    Radiology; 2023 Oct; 309(1):e230989. PubMed ID: 37847135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study.
    Lång K; Josefsson V; Larsson AM; Larsson S; Högberg C; Sartor H; Hofvind S; Andersson I; Rosso A
    Lancet Oncol; 2023 Aug; 24(8):936-944. PubMed ID: 37541274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study.
    Dembrower K; Wåhlin E; Liu Y; Salim M; Smith K; Lindholm P; Eklund M; Strand F
    Lancet Digit Health; 2020 Sep; 2(9):e468-e474. PubMed ID: 33328114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations.
    Larsen M; Aglen CF; Hoff SR; Lund-Hanssen H; Hofvind S
    Eur Radiol; 2022 Dec; 32(12):8238-8246. PubMed ID: 35704111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stand-Alone Use of Artificial Intelligence for Digital Mammography and Digital Breast Tomosynthesis Screening: A Retrospective Evaluation.
    Romero-Martín S; Elías-Cabot E; Raya-Povedano JL; Gubern-Mérida A; Rodríguez-Ruiz A; Álvarez-Benito M
    Radiology; 2022 Mar; 302(3):535-542. PubMed ID: 34904872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of artificial intelligence in 7533 consecutive prevalent screening mammograms from the BreastScreen Australia program.
    Waugh J; Evans J; Miocevic M; Lockie D; Aminzadeh P; Lynch A; Bell RJ
    Eur Radiol; 2024 Jun; 34(6):3947-3957. PubMed ID: 37955669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography.
    Pedemonte S; Tsue T; Mombourquette B; Truong Vu YN; Matthews T; Morales Hoil R; Shah M; Ghare N; Zingman-Daniels N; Holley S; Appleton CM; Su J; Wahl RL
    Radiol Artif Intell; 2024 May; 6(3):e230033. PubMed ID: 38597785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Intelligence Evaluation of 122 969 Mammography Examinations from a Population-based Screening Program.
    Larsen M; Aglen CF; Lee CI; Hoff SR; Lund-Hanssen H; Lång K; Nygård JF; Ursin G; Hofvind S
    Radiology; 2022 Jun; 303(3):502-511. PubMed ID: 35348377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Artificial Intelligence-based Mammography Screening Protocol for Breast Cancer: Outcome and Radiologist Workload.
    Lauritzen AD; Rodríguez-Ruiz A; von Euler-Chelpin MC; Lynge E; Vejborg I; Nielsen M; Karssemeijer N; Lillholm M
    Radiology; 2022 Jul; 304(1):41-49. PubMed ID: 35438561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic Performance of AI for Cancers Registered in A Mammography Screening Program: A Retrospective Analysis.
    Kizildag Yirgin I; Koyluoglu YO; Seker ME; Ozkan Gurdal S; Ozaydin AN; Ozcinar B; Cabioğlu N; Ozmen V; Aribal E
    Technol Cancer Res Treat; 2022; 21():15330338221075172. PubMed ID: 35060413
    [No Abstract]   [Full Text] [Related]  

  • 15. Accuracy of an Artificial Intelligence System for Interval Breast Cancer Detection at Screening Mammography.
    Nanaa M; Gupta VO; Hickman SE; Allajbeu I; Payne NR; Arponen O; Black R; Huang Y; Priest AN; Gilbert FJ
    Radiology; 2024 Aug; 312(2):e232303. PubMed ID: 39189901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence (AI) for breast cancer screening: BreastScreen population-based cohort study of cancer detection.
    Marinovich ML; Wylie E; Lotter W; Lund H; Waddell A; Madeley C; Pereira G; Houssami N
    EBioMedicine; 2023 Apr; 90():104498. PubMed ID: 36863255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagnostic capabilities of artificial intelligence as an additional reader in a breast cancer screening program.
    Seker ME; Koyluoglu YO; Ozaydin AN; Gurdal SO; Ozcinar B; Cabioglu N; Ozmen V; Aribal E
    Eur Radiol; 2024 Sep; 34(9):6145-6157. PubMed ID: 38388718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening mammography performance according to breast density: a comparison between radiologists versus standalone intelligence detection.
    Kwon MR; Chang Y; Ham SY; Cho Y; Kim EY; Kang J; Park EK; Kim KH; Kim M; Kim TS; Lee H; Kwon R; Lim GY; Choi HR; Choi J; Kook SH; Ryu S
    Breast Cancer Res; 2024 Apr; 26(1):68. PubMed ID: 38649889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AI-integrated Screening to Replace Double Reading of Mammograms: A Population-wide Accuracy and Feasibility Study.
    Elhakim MT; Stougaard SW; Graumann O; Nielsen M; Gerke O; Larsen LB; Rasmussen BSB
    Radiol Artif Intell; 2024 Nov; 6(6):e230529. PubMed ID: 39230423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study.
    Rodriguez-Ruiz A; Lång K; Gubern-Merida A; Teuwen J; Broeders M; Gennaro G; Clauser P; Helbich TH; Chevalier M; Mertelmeier T; Wallis MG; Andersson I; Zackrisson S; Sechopoulos I; Mann RM
    Eur Radiol; 2019 Sep; 29(9):4825-4832. PubMed ID: 30993432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.