BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38597809)

  • 1. Improving chilling tolerance of peanut seedlings by enhancing antioxidant-modulated ROS scavenging ability, alleviating photosynthetic inhibition, and mobilizing nutrient absorption.
    Dong J; Zhang H; Ai X; Dong Q; Shi X; Zhao X; Zhong C; Yu H
    Plant Biol (Stuttg); 2024 Jun; 26(4):532-543. PubMed ID: 38597809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative physiological and transcriptomic analyses reveal key regulatory networks and potential hub genes controlling peanut chilling tolerance.
    Zhang H; Jiang C; Lei J; Dong J; Ren J; Shi X; Zhong C; Wang X; Zhao X; Yu H
    Genomics; 2022 Mar; 114(2):110285. PubMed ID: 35124174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid signalling mediated by PLD/PA modulates proline and H
    Peppino Margutti M; Reyna M; Meringer MV; Racagni GE; Villasuso AL
    Plant Physiol Biochem; 2017 Apr; 113():149-160. PubMed ID: 28214728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation.
    Patel M; Rangani J; Kumari A; Parida AK
    J Biotechnol; 2020 Nov; 323():136-158. PubMed ID: 32827603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome analysis reveals a systematic response of cold-acclimated seedlings of an exotic mangrove plant Sonneratia apetala to chilling stress.
    Shen ZJ; Qin YY; Luo MR; Li Z; Ma DN; Wang WH; Zheng HL
    J Proteomics; 2021 Sep; 248():104349. PubMed ID: 34411764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecophysiological differences between three mangrove seedlings (Kandelia obovata, Aegiceras corniculatum, and Avicennia marina) exposed to chilling stress.
    Peng YL; Wang YS; Fei J; Sun CC; Cheng H
    Ecotoxicology; 2015 Oct; 24(7-8):1722-32. PubMed ID: 26002219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chilling acclimation on germination and seedlings response to cold in different seed coat colored wheat (Triticum aestivum L.).
    Calderon Flores P; Yoon JS; Kim DY; Seo YW
    BMC Plant Biol; 2021 Jun; 21(1):252. PubMed ID: 34078280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Chilling Stress on Morphological, Physiological, and Biochemical Attributes of Silage Corn Genotypes during Seedling Establishment.
    Wu J; Nadeem M; Galagedara L; Thomas R; Cheema M
    Plants (Basel); 2022 Apr; 11(9):. PubMed ID: 35567218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of tomato GDP-L-galactose phosphorylase gene in tobacco improves tolerance to chilling stress.
    Wang L; Meng X; Yang D; Ma N; Wang G; Meng Q
    Plant Cell Rep; 2014 Sep; 33(9):1441-51. PubMed ID: 24832771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-induced mitigation of drought stress in peanut genotypes (Arachis hypogaea L.) through ion homeostasis, modulations of antioxidative defense system, and metabolic regulations.
    Patel M; Fatnani D; Parida AK
    Plant Physiol Biochem; 2021 Sep; 166():290-313. PubMed ID: 34146784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress.
    Duan M; Ma NN; Li D; Deng YS; Kong FY; Lv W; Meng QW
    Plant Physiol Biochem; 2012 Sep; 58():37-45. PubMed ID: 22771434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum).
    Feng Y; Zhang M; Guo Q; Wang G; Gong J; Xu Y; Wang W
    Plant Physiol Biochem; 2014 Feb; 75():138-44. PubMed ID: 24445300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress.
    Erdal S
    Plant Physiol Biochem; 2012 Aug; 57():1-7. PubMed ID: 22634365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous uniconazole enhances tolerance to chilling stress in mung beans (Vigna radiata L.) through cross talk among photosynthesis, antioxidant system, sucrose metabolism, and hormones.
    Yu M; Huang L; Feng N; Zheng D; Zhao J
    J Plant Physiol; 2022 Sep; 276():153772. PubMed ID: 35872423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium deficiency stress tolerance in peanut (Arachis hypogaea) through ion homeostasis, activation of antioxidant defense, and metabolic dynamics: Alleviatory role of silicon supplementation.
    Patel M; Fatnani D; Parida AK
    Plant Physiol Biochem; 2022 Jul; 182():55-75. PubMed ID: 35468526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous salicylic acid accumulation is required for chilling tolerance in cucumber (Cucumis sativus L.) seedlings.
    Dong CJ; Li L; Shang QM; Liu XY; Zhang ZG
    Planta; 2014 Oct; 240(4):687-700. PubMed ID: 25034826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auxin acts as a downstream signaling molecule involved in hydrogen sulfide-induced chilling tolerance in cucumber.
    Zhang XW; Liu FJ; Zhai J; Li FD; Bi HG; Ai XZ
    Planta; 2020 Feb; 251(3):69. PubMed ID: 32076872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium enhanced the resistance against Phoma arachidicola by improving cell membrane stability and regulating reactive oxygen species metabolism in peanut.
    Yan L; Liu S; Li R; Li Z; Piao J; Zhou R
    BMC Plant Biol; 2024 Jun; 24(1):501. PubMed ID: 38840062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco.
    Negi NP; Shrivastava DC; Sharma V; Sarin NB
    Plant Cell Rep; 2015 Jul; 34(7):1109-26. PubMed ID: 25712013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation.
    Zhang Z; Cao B; Gao S; Xu K
    Protoplasma; 2019 Jul; 256(4):1013-1024. PubMed ID: 30805718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.