These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38598118)

  • 21. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antimony mobility during prolonged waterlogging and reoxidation of shooting range soil: A field experiment.
    Tandy S; Hockmann K; Keller M; Studer B; Papritz A; Schulin R
    Sci Total Environ; 2018 May; 624():838-844. PubMed ID: 29274608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide.
    Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T
    Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speciation, in vitro bioaccessibility and health risk of antimony in soils near an old industrial area.
    Wang H; Yang Q; Zhu Y; Gu Q; Martín JD
    Sci Total Environ; 2023 Jan; 854():158767. PubMed ID: 36113806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of arsenic mobilization in paddy soils by manganese and iron oxides.
    Xu X; Chen C; Wang P; Kretzschmar R; Zhao FJ
    Environ Pollut; 2017 Dec; 231(Pt 1):37-47. PubMed ID: 28783611
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimony and Arsenic Behavior during Fe(II)-Induced Transformation of Jarosite.
    Karimian N; Johnston SG; Burton ED
    Environ Sci Technol; 2017 Apr; 51(8):4259-4268. PubMed ID: 28347133
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1.
    Xiang L; Liu C; Liu D; Ma L; Qiu X; Wang H; Lu X
    J Environ Sci (China); 2022 Jan; 111():273-281. PubMed ID: 34949357
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biochar-induced changes in soil microbial affect species of antimony in contaminated soils.
    Hua L; Wu C; Zhang H; Cao L; Wei T; Guo J
    Chemosphere; 2021 Jan; 263():127795. PubMed ID: 32822942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization mechanism of antimony by applying zirconium-manganese oxide in soil.
    Rong Q; Nong X; Zhang C; Zhong K; Zhao H
    Sci Total Environ; 2022 Jun; 823():153435. PubMed ID: 35092780
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of antimony biogeochemical processes under pre-definite anaerobic and aerobic conditions in a paddy soil.
    Xia B; Yang Y; Li F; Liu T
    J Environ Sci (China); 2022 Mar; 113():269-280. PubMed ID: 34963536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic Mobilization from Historically Contaminated Mining Soils in a Continuously Operated Bioreactor: Implications for Risk Assessment.
    Rajpert L; Kolvenbach BA; Ammann EM; Hockmann K; Nachtegaal M; Eiche E; Schäffer A; Corvini PF; Skłodowska A; Lenz M
    Environ Sci Technol; 2016 Sep; 50(17):9124-32. PubMed ID: 27454004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reductive transformation of birnessite and the mobility of co-associated antimony.
    Karimian N; Johnston SG; Burton ED
    J Hazard Mater; 2021 Feb; 404(Pt B):124227. PubMed ID: 33086181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manganese Oxidation States in Volcanic Soils across Annual Rainfall Gradients.
    Wen K; Chadwick OA; Vitousek PM; Paulus EL; Landrot G; Tappero RV; Kaszuba JP; Luther GW; Wang Z; Reinhart BJ; Zhu M
    Environ Sci Technol; 2023 Jan; 57(1):730-740. PubMed ID: 36538415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Migration and transformation of Sb are affected by Mn(III/IV) associated with lepidocrocite originating from Fe(II) oxidation.
    Shao Y; Sun Q; Wang L; Zhan W; Zhang H; Zhong H
    J Environ Sci (China); 2022 May; 115():308-318. PubMed ID: 34969458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimony retention and release from drained and waterlogged shooting range soil under field conditions.
    Hockmann K; Tandy S; Lenz M; Reiser R; Conesa HM; Keller M; Studer B; Schulin R
    Chemosphere; 2015 Sep; 134():536-43. PubMed ID: 25592464
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugar beet factory lime affects the mobilization of Cd, Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil.
    Shaheen SM; Rinklebe J
    J Environ Manage; 2017 Jan; 186(Pt 2):253-260. PubMed ID: 27499501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil.
    Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R
    Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions.
    Sun W; Xiao E; Xiao T; Krumins V; Wang Q; Häggblom M; Dong Y; Tang S; Hu M; Li B; Xia B; Liu W
    Environ Sci Technol; 2017 Aug; 51(16):9165-9175. PubMed ID: 28700218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.