BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38598133)

  • 1. Mathematical Modelling of Parasite Dynamics: A Stochastic Simulation-Based Approach and Parameter Estimation via Modified Sequential-Type Approximate Bayesian Computation.
    Twumasi C; Cable J; Pepelyshev A
    Bull Math Biol; 2024 Apr; 86(5):54. PubMed ID: 38598133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal parasite dynamics: microhabitat preferences and infection progression of two co-infecting gyrodactylids.
    Twumasi C; Jones O; Cable J
    Parasit Vectors; 2022 Sep; 15(1):336. PubMed ID: 36153606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity?
    Rubio-Godoy M; Muñoz-Córdova G; Garduño-Lugo M; Salazar-Ulloa M; Mercado-Vidal G
    Vet Parasitol; 2012 Feb; 183(3-4):305-16. PubMed ID: 21840127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An agent-based modelling approach to estimate error in gyrodactylid population growth.
    Ramírez R; Harris PD; Bakke TA
    Int J Parasitol; 2012 Aug; 42(9):809-17. PubMed ID: 22771983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerated regression-based summary statistics for discrete stochastic systems via approximate simulators.
    Jiang RM; Wrede F; Singh P; Hellander A; Petzold LR
    BMC Bioinformatics; 2021 Jun; 22(1):339. PubMed ID: 34162329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
    Toni T; Welch D; Strelkowa N; Ipsen A; Stumpf MP
    J R Soc Interface; 2009 Feb; 6(31):187-202. PubMed ID: 19205079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models.
    Daly AC; Cooper J; Gavaghan DJ; Holmes C
    J R Soc Interface; 2017 Sep; 14(134):. PubMed ID: 28931636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating parameters of a stochastic cell invasion model with fluorescent cell cycle labelling using approximate Bayesian computation.
    Carr MJ; Simpson MJ; Drovandi C
    J R Soc Interface; 2021 Sep; 18(182):20210362. PubMed ID: 34547212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An approximate Bayesian computation approach to parameter estimation in a stochastic stage-structured population model.
    Scranton K; Knape J; de Valpine P
    Ecology; 2014 May; 95(5):1418-28. PubMed ID: 25000772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of parameters for macroparasite population evolution using approximate bayesian computation.
    Drovandi CC; Pettitt AN
    Biometrics; 2011 Mar; 67(1):225-33. PubMed ID: 20345496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taking error into account when fitting models using Approximate Bayesian Computation.
    van der Vaart E; Prangle D; Sibly RM
    Ecol Appl; 2018 Mar; 28(2):267-274. PubMed ID: 29178336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gyro-scope: an individual-based computer model to forecast gyrodactylid infections on fish hosts.
    van Oosterhout C; Potter R; Wright H; Cable J
    Int J Parasitol; 2008 Apr; 38(5):541-8. PubMed ID: 18022176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of Monte Carlo-based Bayesian parameter estimation methods for stochastic models of genetic networks.
    Mariño IP; Zaikin A; Míguez J
    PLoS One; 2017; 12(8):e0182015. PubMed ID: 28797087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Approximate Bayesian Computation for infectious disease modelling.
    Minter A; Retkute R
    Epidemics; 2019 Dec; 29():100368. PubMed ID: 31563466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Birth/birth-death processes and their computable transition probabilities with biological applications.
    Ho LST; Xu J; Crawford FW; Minin VN; Suchard MA
    J Math Biol; 2018 Mar; 76(4):911-944. PubMed ID: 28741177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting summary statistics in approximate Bayesian computation for calibrating stochastic models.
    Burr T; Skurikhin A
    Biomed Res Int; 2013; 2013():210646. PubMed ID: 24288668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation.
    Tankhilevich E; Ish-Horowicz J; Hameed T; Roesch E; Kleijn I; Stumpf MPH; He F
    Bioinformatics; 2020 May; 36(10):3286-3287. PubMed ID: 32022854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automatic adaptive method to combine summary statistics in approximate Bayesian computation.
    Harrison JU; Baker RE
    PLoS One; 2020; 15(8):e0236954. PubMed ID: 32760106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computationally efficient parameter estimation for spatial individual-level models of infectious disease transmission.
    Ward MA; Deeth LE; Deardon R
    Spat Spatiotemporal Epidemiol; 2022 Jun; 41():100497. PubMed ID: 35691654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microsimulation Model Calibration with Approximate Bayesian Computation in R: A Tutorial.
    Shewmaker P; Chrysanthopoulou SA; Iskandar R; Lake D; Jutkowitz E
    Med Decis Making; 2022 Jul; 42(5):557-570. PubMed ID: 35311401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.