BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38598140)

  • 1. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.
    Ehrampoosh S; Dave M; Kia MA; Rablau C; Zadeh MH
    Comput Aided Surg; 2013; 18(5-6):129-41. PubMed ID: 24156342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial palpation in robotic surgery using haptic feedback.
    Abiri A; Juo YY; Tao A; Askari SJ; Pensa J; Bisley JW; Dutson EP; Grundfest WS
    Surg Endosc; 2019 Apr; 33(4):1252-1259. PubMed ID: 30187198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudo-Haptic Feedback in Teleoperation.
    Neupert C; Matich S; Scherping N; Kupnik M; Werthschutzky R; Hatzfeld C
    IEEE Trans Haptics; 2016; 9(3):397-408. PubMed ID: 27116752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haptic feedback in the da Vinci Research Kit (dVRK): A user study based on grasping, palpation, and incision tasks.
    Saracino A; Deguet A; Staderini F; Boushaki MN; Cianchi F; Menciassi A; Sinibaldi E
    Int J Med Robot; 2019 Aug; 15(4):e1999. PubMed ID: 30970387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensorless force-feedback system for robot-assisted laparoscopic surgery.
    Zhao B; Nelson CA
    Comput Assist Surg (Abingdon); 2019 Oct; 24(sup1):36-43. PubMed ID: 30661415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Transparent Teleoperated Robotic Surgical System with Predictive Haptic Feedback and Force Modelling.
    Batty T; Ehrampoosh A; Shirinzadeh B; Zhong Y; Smith J
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Performance of Passive Teleoperation Systems via Cutaneous Feedback.
    Pacchierotti C; Tirmizi A; Bianchini G; Prattichizzo D
    IEEE Trans Haptics; 2015; 8(4):397-409. PubMed ID: 26208364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Haptic Feedback on Bimanually Teleoperated Laparoscopy for Endometriosis Surgery.
    Diez SP; Borghesan G; Joyeux L; Meuleman C; Deprest J; Stoyanov D; Ourselin S; Vercauteren T; Reynaerts D; Poorten EBV
    IEEE Trans Biomed Eng; 2019 May; 66(5):1207-1221. PubMed ID: 30235114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmentation of haptic feedback for teleoperated robotic surgery.
    Schleer P; Kaiser P; Drobinsky S; Radermacher K
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):515-529. PubMed ID: 32002750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a trilateral shared-control architecture for teleoperated training robots.
    Shamaei K; Kim LH; Okamura AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4887-93. PubMed ID: 26737388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.