These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction. Rastogi A; Yalavarthy PK Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049 [TBL] [Abstract][Full Text] [Related]
3. MoDL-QSM: Model-based deep learning for quantitative susceptibility mapping. Feng R; Zhao J; Wang H; Yang B; Feng J; Shi Y; Zhang M; Liu C; Zhang Y; Zhuang J; Wei H Neuroimage; 2021 Oct; 240():118376. PubMed ID: 34246768 [TBL] [Abstract][Full Text] [Related]
4. Quantitative susceptibility mapping using multi-channel convolutional neural networks with dipole-adaptive multi-frequency inputs. Si W; Guo Y; Zhang Q; Zhang J; Wang Y; Feng Y Front Neurosci; 2023; 17():1165446. PubMed ID: 37383103 [TBL] [Abstract][Full Text] [Related]
5. Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. Gao Y; Cloos M; Liu F; Crozier S; Pike GB; Sun H Neuroimage; 2021 Oct; 240():118404. PubMed ID: 34280526 [TBL] [Abstract][Full Text] [Related]
6. Plug-and-Play latent feature editing for orientation-adaptive quantitative susceptibility mapping neural networks. Gao Y; Xiong Z; Shan S; Liu Y; Rong P; Li M; Wilman AH; Pike GB; Liu F; Sun H Med Image Anal; 2024 May; 94():103160. PubMed ID: 38552528 [TBL] [Abstract][Full Text] [Related]
7. A data-driven deep learning pipeline for quantitative susceptibility mapping (QSM). Wang Z; Xia P; Huang F; Wei H; Hui ES; Mak HK; Cao P Magn Reson Imaging; 2022 May; 88():89-100. PubMed ID: 35124180 [TBL] [Abstract][Full Text] [Related]
8. DF-QSM: Data Fidelity based Hybrid Approach for Improved Quantitative Susceptibility Mapping of the Brain. Paluru N; Susan Mathew R; Yalavarthy PK NMR Biomed; 2024 Sep; 37(9):e5163. PubMed ID: 38649140 [TBL] [Abstract][Full Text] [Related]
9. Quantitative susceptibility mapping using deep neural network: QSMnet. Yoon J; Gong E; Chatnuntawech I; Bilgic B; Lee J; Jung W; Ko J; Jung H; Setsompop K; Zaharchuk G; Kim EY; Pauly J; Lee J Neuroimage; 2018 Oct; 179():199-206. PubMed ID: 29894829 [TBL] [Abstract][Full Text] [Related]
10. Towards in vivo ground truth susceptibility for single-orientation deep learning QSM: A multi-orientation gradient-echo MRI dataset. Shi Y; Feng R; Li Z; Zhuang J; Zhang Y; Wei H Neuroimage; 2022 Nov; 261():119522. PubMed ID: 35905811 [TBL] [Abstract][Full Text] [Related]
11. msQSM: Morphology-based self-supervised deep learning for quantitative susceptibility mapping. He J; Peng Y; Fu B; Zhu Y; Wang L; Wang R Neuroimage; 2023 Jul; 275():120181. PubMed ID: 37220799 [TBL] [Abstract][Full Text] [Related]
12. [A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping]. Si W; Feng Y Nan Fang Yi Ke Da Xue Xue Bao; 2022 Dec; 42(12):1799-1806. PubMed ID: 36651247 [TBL] [Abstract][Full Text] [Related]
13. Instant tissue field and magnetic susceptibility mapping from MRI raw phase using Laplacian enhanced deep neural networks. Gao Y; Xiong Z; Fazlollahi A; Nestor PJ; Vegh V; Nasrallah F; Winter C; Pike GB; Crozier S; Liu F; Sun H Neuroimage; 2022 Oct; 259():119410. PubMed ID: 35753595 [TBL] [Abstract][Full Text] [Related]
14. A preliminary attempt to visualize nigrosome 1 in the substantia nigra for Parkinson's disease at 3T: An efficient susceptibility map-weighted imaging (SMWI) with quantitative susceptibility mapping using deep neural network (QSMnet). Jo M; Oh SH Med Phys; 2020 Mar; 47(3):1151-1160. PubMed ID: 31883389 [TBL] [Abstract][Full Text] [Related]
15. Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities. Jung W; Bollmann S; Lee J NMR Biomed; 2022 Apr; 35(4):e4292. PubMed ID: 32207195 [TBL] [Abstract][Full Text] [Related]
16. Deep learning-regularized, single-step quantitative susceptibility mapping quantification. Wang Z; Mak HK; Cao P NMR Biomed; 2023 Mar; 36(3):e4849. PubMed ID: 36259729 [TBL] [Abstract][Full Text] [Related]
17. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method. Sun H; Ma Y; MacDonald ME; Pike GB Neuroimage; 2018 Oct; 179():166-175. PubMed ID: 29906634 [TBL] [Abstract][Full Text] [Related]
18. A subject-specific unsupervised deep learning method for quantitative susceptibility mapping using implicit neural representation. Zhang M; Feng R; Li Z; Feng J; Wu Q; Zhang Z; Ma C; Wu J; Yan F; Liu C; Zhang Y; Wei H Med Image Anal; 2024 Jul; 95():103173. PubMed ID: 38657424 [TBL] [Abstract][Full Text] [Related]
19. DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. Bollmann S; Rasmussen KGB; Kristensen M; Blendal RG; Østergaard LR; Plocharski M; O'Brien K; Langkammer C; Janke A; Barth M Neuroimage; 2019 Jul; 195():373-383. PubMed ID: 30935908 [TBL] [Abstract][Full Text] [Related]
20. xQSM: quantitative susceptibility mapping with octave convolutional and noise-regularized neural networks. Gao Y; Zhu X; Moffat BA; Glarin R; Wilman AH; Pike GB; Crozier S; Liu F; Sun H NMR Biomed; 2021 Mar; 34(3):e4461. PubMed ID: 33368705 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]