These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38598301)

  • 1. Scaling of stochastic growth and division dynamics: A comparative study of individual rod-shaped cells in the Mother Machine and SChemostat platforms.
    Ziegler KF; Joshi K; Wright CS; Roy S; Caruso W; Biswas RR; Iyer-Biswas S
    Mol Biol Cell; 2024 Jun; 35(6):ar78. PubMed ID: 38598301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaling laws governing stochastic growth and division of single bacterial cells.
    Iyer-Biswas S; Wright CS; Henry JT; Lo K; Burov S; Lin Y; Crooks GE; Crosson S; Dinner AR; Scherer NF
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15912-7. PubMed ID: 25349411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tightly regulated and heritable division control in single bacterial cells.
    Siegal-Gaskins D; Crosson S
    Biophys J; 2008 Aug; 95(4):2063-72. PubMed ID: 18469083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic spatiotemporal model of a response-regulator network in the Caulobacter crescentus cell cycle.
    Li F; Subramanian K; Chen M; Tyson JJ; Cao Y
    Phys Biol; 2016 Jun; 13(3):035007. PubMed ID: 27345750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Super-exponential growth and stochastic size dynamics in rod-like bacteria.
    Cylke A; Banerjee S
    Biophys J; 2023 Apr; 122(7):1254-1267. PubMed ID: 36814380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intergenerational continuity of cell shape dynamics in Caulobacter crescentus.
    Wright CS; Banerjee S; Iyer-Biswas S; Crosson S; Dinner AR; Scherer NF
    Sci Rep; 2015 Mar; 5():9155. PubMed ID: 25778096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential growth regulates asymmetric size partitioning in
    Ng TW; Ojkic N; Serbanescu D; Banerjee S
    Life Sci Alliance; 2024 Aug; 7(8):. PubMed ID: 38806218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Basis and Ecological Relevance of
    Heinrich K; Leslie DJ; Morlock M; Bertilsson S; Jonas K
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Noise Mechanisms in Cell-Size Control.
    Modi S; Vargas-Garcia CA; Ghusinga KR; Singh A
    Biophys J; 2017 Jun; 112(11):2408-2418. PubMed ID: 28591613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative study of the division cycle of Caulobacter crescentus stalked cells.
    Li S; Brazhnik P; Sobral B; Tyson JJ
    PLoS Comput Biol; 2008 Jan; 4(1):e9. PubMed ID: 18225942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus.
    Barrows JM; Sundararajan K; Bhargava A; Goley ED
    J Bacteriol; 2020 Mar; 202(7):. PubMed ID: 31932314
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new factor stimulating peptidoglycan hydrolysis to separate daughter cells in Caulobacter crescentus.
    Collier J
    Mol Microbiol; 2010 Jul; 77(1):11-4. PubMed ID: 20497501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shapeshifting to Survive: Shape Determination and Regulation in Caulobacter crescentus.
    Woldemeskel SA; Goley ED
    Trends Microbiol; 2017 Aug; 25(8):673-687. PubMed ID: 28359631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus.
    Ozaki S; Jenal U; Katayama T
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell division control in Caulobacter crescentus.
    Collier J
    Biochim Biophys Acta Gene Regul Mech; 2019 Jul; 1862(7):685-690. PubMed ID: 29715525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.
    Li S; Brazhnik P; Sobral B; Tyson JJ
    PLoS Comput Biol; 2009 Aug; 5(8):e1000463. PubMed ID: 19680425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constant size extension drives bacterial cell size homeostasis.
    Campos M; Surovtsev IV; Kato S; Paintdakhi A; Beltran B; Ebmeier SE; Jacobs-Wagner C
    Cell; 2014 Dec; 159(6):1433-46. PubMed ID: 25480302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus.
    Jensen RB
    J Bacteriol; 2006 Mar; 188(6):2244-53. PubMed ID: 16513754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of the Caulobacter cell division machine.
    Goley ED; Yeh YC; Hong SH; Fero MJ; Abeliuk E; McAdams HH; Shapiro L
    Mol Microbiol; 2011 Jun; 80(6):1680-98. PubMed ID: 21542856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.