BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38598343)

  • 1. Evolutionary and developmental specialization of foveal cell types in the marmoset.
    Zhang L; Cavallini M; Wang J; Xin R; Zhang Q; Feng G; Sanes JR; Peng YR
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2313820121. PubMed ID: 38598343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary and Developmental Specialization of Foveal Cell Types in the Marmoset.
    Zhang L; Cavallini M; Wang J; Xin R; Zhang Q; Feng G; Sanes JR; Peng YR
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foveal cone density shows a rapid postnatal maturation in the marmoset monkey.
    Springer AD; Troilo D; Possin D; Hendrickson AE
    Vis Neurosci; 2011 Nov; 28(6):473-84. PubMed ID: 22192504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of ganglion cells and photoreceptors in the retina of a New World monkey: the marmoset Callithrix jacchus.
    Wilder HD; Grünert U; Lee BB; Martin PR
    Vis Neurosci; 1996; 13(2):335-52. PubMed ID: 8737285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the neural retina and its vasculature in the marmoset Callithrix jacchus.
    Hendrickson A; Troilo D; Possin D; Springer A
    J Comp Neurol; 2006 Jul; 497(2):270-86. PubMed ID: 16705674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea.
    Percival KA; Martin PR; Grünert U
    Eur J Neurosci; 2013 Apr; 37(7):1072-89. PubMed ID: 23311464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The primate fovea: Structure, function and development.
    Bringmann A; Syrbe S; Görner K; Kacza J; Francke M; Wiedemann P; Reichenbach A
    Prog Retin Eye Res; 2018 Sep; 66():49-84. PubMed ID: 29609042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Classification and Comparative Taxonomics of Foveal and Peripheral Cells in Primate Retina.
    Peng YR; Shekhar K; Yan W; Herrmann D; Sappington A; Bryman GS; van Zyl T; Do MTH; Regev A; Sanes JR
    Cell; 2019 Feb; 176(5):1222-1237.e22. PubMed ID: 30712875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and Circuit Mechanisms Shaping the Perceptual Properties of the Primate Fovea.
    Sinha R; Hoon M; Baudin J; Okawa H; Wong ROL; Rieke F
    Cell; 2017 Jan; 168(3):413-426.e12. PubMed ID: 28129540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus).
    Troilo D; Howland HC; Judge SJ
    Vision Res; 1993 Jul; 33(10):1301-10. PubMed ID: 8333154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the short wavelength-sensitive ("blue") cone mosaic in the primate retina: comparison of New World and Old World monkeys.
    Martin PR; Grünert U
    J Comp Neurol; 1999 Mar; 406(1):1-14. PubMed ID: 10100889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The temporal profile of retinal cell genesis in the marmoset monkey.
    Hendrickson A; Possin D; Kwan WC; Huang J; Bourne JA
    J Comp Neurol; 2016 Apr; 524(6):1193-207. PubMed ID: 26355791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of synaptic and phototransduction markers during photoreceptor development in the marmoset monkey Callithrix jacchus.
    Hendrickson A; Troilo D; Djajadi H; Possin D; Springer A
    J Comp Neurol; 2009 Jan; 512(2):218-31. PubMed ID: 19003975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gradients of cone differentiation and FGF expression during development of the foveal depression in macaque retina.
    Cornish EE; Madigan MC; Natoli R; Hales A; Hendrickson AE; Provis JM
    Vis Neurosci; 2005; 22(4):447-59. PubMed ID: 16212702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The midget-parvocellular pathway of marmoset retina: a quantitative light microscopic study.
    Telkes I; Lee SC; Jusuf PR; Grünert U
    J Comp Neurol; 2008 Oct; 510(5):539-49. PubMed ID: 18683219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea.
    Bumsted K; Hendrickson A
    J Comp Neurol; 1999 Jan; 403(4):502-16. PubMed ID: 9888315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing.
    Voigt AP; Whitmore SS; Flamme-Wiese MJ; Riker MJ; Wiley LA; Tucker BA; Stone EM; Mullins RF; Scheetz TE
    Exp Eye Res; 2019 Jul; 184():234-242. PubMed ID: 31075224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anolis carolinensis as a model to understand the molecular and cellular basis of foveal development.
    Sannan NS; Shan X; Gregory-Evans K; Kusumi K; Gregory-Evans CY
    Exp Eye Res; 2018 Aug; 173():138-147. PubMed ID: 29775563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations.
    Beltran WA; Cideciyan AV; Guziewicz KE; Iwabe S; Swider M; Scott EM; Savina SV; Ruthel G; Stefano F; Zhang L; Zorger R; Sumaroka A; Jacobson SG; Aguirre GD
    PLoS One; 2014; 9(3):e90390. PubMed ID: 24599007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina.
    Kim YJ; Packer O; Pollreisz A; Martin PR; Grünert U; Dacey DM
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2300545120. PubMed ID: 37098066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.