These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38598498)

  • 1. Cation Triggered Self-Assembly of α-Lactalbumin Nanotubes.
    Liu B; Radiom M; Zhou J; Yan H; Zhang J; Wu D; Sun Q; Xuan Q; Li Y; Mezzenga R
    Nano Lett; 2024 Apr; ():. PubMed ID: 38598498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and binding ability of self-assembled α-lactalbumin protein nanotubular gels.
    Tarhan Ö; Hamaker BR; Campanella OH
    Biotechnol Prog; 2021 May; 37(3):e3127. PubMed ID: 33464699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-Induced Reassembly between Protein Nanotubes and Nanospheres.
    Zhang J; Liu B; Li D; Radiom M; Zhang H; Cohen Stuart MA; Sagis LMC; Li Z; Chen S; Li X; Li Y
    Biomacromolecules; 2023 Sep; 24(9):3985-3995. PubMed ID: 37642585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Cation Triggered Peptide Hydrogels and Their Application in Food Freshness Monitoring and Dye Adsorption.
    Fortunato A; Mba M
    Gels; 2021 Jul; 7(3):. PubMed ID: 34287282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetic mechanism of cations induced protein nanotubes self-assembly and their application as delivery system.
    Zhang J; Wang Q; Liu B; Li D; Zhang H; Wang P; Liu J; Hou G; Li X; Yuan Y; Li Z; Chen S; Yan H; Li Y
    Biomaterials; 2022 Jul; 286():121600. PubMed ID: 35660822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly.
    Ji W; Yuan C; Zilberzwige-Tal S; Xing R; Chakraborty P; Tao K; Gilead S; Yan X; Gazit E
    ACS Nano; 2019 Jun; 13(6):7300-7309. PubMed ID: 31181152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of conformational changes induced by the binding of various metal ions to bovine alpha-lactalbumin.
    Noyelle K; Van Dael H
    J Inorg Biochem; 2002 Jan; 88(1):69-76. PubMed ID: 11750027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.
    Tarhan O; Harsa S
    Biotechnol Prog; 2014; 30(6):1301-10. PubMed ID: 25079253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the structure of alpha-lactalbumin protein nanotubes using optical spectroscopy.
    Tarhan O; Tarhan E; Harsa S
    J Dairy Res; 2014 Feb; 81(1):98-106. PubMed ID: 24351706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of calcium on the self-assembly of partially hydrolyzed alpha-lactalbumin.
    Graveland-Bikker JF; Ipsen R; Otte J; de Kruif CG
    Langmuir; 2004 Aug; 20(16):6841-6. PubMed ID: 15274593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion binding by a G-2 poly(ethylene imine) dendrimer. Ion-directed self-assembling of hierarchical mono- and two-dimensional nanostructured materials.
    Bazzicalupi C; Bianchi A; Giorgi C; Gratteri P; Mariani P; Valtancoli B
    Inorg Chem; 2013 Feb; 52(4):2125-37. PubMed ID: 23387293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Lactalbumin, Amazing Calcium-Binding Protein.
    Permyakov EA
    Biomolecules; 2020 Aug; 10(9):. PubMed ID: 32825311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing Seven Transition Metal Ions into Terpyridine-Based Supramolecules: Self-Assembly and Dynamic Ligand Exchange Study.
    Wang L; Song B; Khalife S; Li Y; Ming LJ; Bai S; Xu Y; Yu H; Wang M; Wang H; Li X
    J Am Chem Soc; 2020 Jan; 142(4):1811-1821. PubMed ID: 31910337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The fortification of encapsulated soy isoflavones and texture modification of soy milk by α-lactalbumin nanotubes.
    Liu B; Thum C; Wang Q; Feng C; Li T; Damiani Victorelli F; Li X; Chang R; Chen S; Gong Y; Li Y
    Food Chem; 2023 Sep; 419():135979. PubMed ID: 37030206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and mechanical study of a self-assembling protein nanotube.
    Graveland-Bikker JF; Schaap IA; Schmidt CF; de Kruif CG
    Nano Lett; 2006 Apr; 6(4):616-21. PubMed ID: 16608254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Transport of Shape and Rigidity-Tuned α-Lactalbumin Nanotubes across Intestinal Mucus and Cellular Barriers.
    Bao C; Liu B; Li B; Chai J; Zhang L; Jiao L; Li D; Yu Z; Ren F; Shi X; Li Y
    Nano Lett; 2020 Feb; 20(2):1352-1361. PubMed ID: 31904988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of hydrogel networks by metal ions.
    La Manna S; Florio D; Di Natale C; Marasco D
    J Pept Sci; 2023 Aug; 29(8):e3474. PubMed ID: 36579727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intelligent Metal-Phenolic Metallogels as Dressings for Infected Wounds.
    Anh HTP; Huang CM; Huang CJ
    Sci Rep; 2019 Aug; 9(1):11562. PubMed ID: 31399620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular Virus-Like Nanorods by Coassembly of a Triblock Polypeptide and Reversible Coordination Polymers.
    Hernandez-Garcia A; Velders AH; Stuart MA; de Vries R; van Lent JW; Wang J
    Chemistry; 2017 Jan; 23(2):239-243. PubMed ID: 27727480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.