These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38598610)

  • 1. Learning agile soccer skills for a bipedal robot with deep reinforcement learning.
    Haarnoja T; Moran B; Lever G; Huang SH; Tirumala D; Humplik J; Wulfmeier M; Tunyasuvunakool S; Siegel NY; Hafner R; Bloesch M; Hartikainen K; Byravan A; Hasenclever L; Tassa Y; Sadeghi F; Batchelor N; Casarini F; Saliceti S; Game C; Sreendra N; Patel K; Gwira M; Huber A; Hurley N; Nori F; Hadsell R; Heess N
    Sci Robot; 2024 Apr; 9(89):eadi8022. PubMed ID: 38598610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multi-Agent Reinforcement Learning Method for Omnidirectional Walking of Bipedal Robots.
    Mou H; Xue J; Liu J; Feng Z; Li Q; Zhang J
    Biomimetics (Basel); 2023 Dec; 8(8):. PubMed ID: 38132555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Bipedal Locomotion Based on Reinforcement Learning and Heuristics.
    Wang Z; Wei W; Xie A; Zhang Y; Wu J; Zhu Q
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage training algorithm for AI robot soccer.
    Kim T; Vecchietti LF; Choi K; Sariel S; Har D
    PeerJ Comput Sci; 2021; 7():e718. PubMed ID: 34616894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multitasking-Oriented Robot Arm Motion Planning Scheme Based on Deep Reinforcement Learning and Twin Synchro-Control.
    Liu C; Gao J; Bi Y; Shi X; Tian D
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning and Reusing Quadruped Robot Movement Skills from Biological Dogs for Higher-Level Tasks.
    Wan Q; Luo A; Meng Y; Zhang C; Chi W; Zhang S; Liu Y; Zhu Q; Kong S; Yu J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking and falling: Using robot simulations to model the role of errors in infant walking.
    Ossmy O; Han D; MacAlpine P; Hoch J; Stone P; Adolph KE
    Dev Sci; 2024 Mar; 27(2):e13449. PubMed ID: 37750490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Policy Design for an Ankle-Foot Orthosis Using Simulated Physical Human-Robot Interaction via Deep Reinforcement Learning.
    Han JI; Lee JH; Choi HS; Kim JH; Choi J
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2186-2197. PubMed ID: 35925859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning 3D Bipedal Walking with Planned Footsteps and Fourier Series Periodic Gait Planning.
    Wang S; Piao S; Leng X; He Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning to play against any mixture of opponents.
    Smith MO; Anthony T; Wellman MP
    Front Artif Intell; 2023; 6():804682. PubMed ID: 37547229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots.
    Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of Magnetic Surgical Robots With Model-Based Simulators and Reinforcement Learning.
    Barnoy Y; Erin O; Raval S; Pryor W; Mair LO; Weinberg IN; Diaz-Mercado Y; Krieger A; Hager GD
    IEEE Trans Med Robot Bionics; 2022 Nov; 4(4):945-956. PubMed ID: 37600471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-world humanoid locomotion with reinforcement learning.
    Radosavovic I; Xiao T; Zhang B; Darrell T; Malik J; Sreenath K
    Sci Robot; 2024 Apr; 9(89):eadi9579. PubMed ID: 38630806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Gait Acquisition through Learning Dynamic Stimulus Instinct of Bipedal Robot.
    Zhang Y; Chen X; Meng F; Yu Z; Du Y; Zhou Z; Gao J
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.