These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38598626)

  • 21. Imaging of human brain tumor tissue by near-infrared laser coherence tomography.
    Böhringer HJ; Lankenau E; Stellmacher F; Reusche E; Hüttmann G; Giese A
    Acta Neurochir (Wien); 2009 May; 151(5):507-17; discussion 517. PubMed ID: 19343270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ex vivo full-field cellular-resolution optical coherence tomography of basal cell carcinomas: A pilot study of quality and feasibility of images and diagnostic accuracy in subtypes.
    Wang YJ; Chang WC; Wang JY; Wu YH
    Skin Res Technol; 2020 Mar; 26(2):308-316. PubMed ID: 31785040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative study of deep neural networks with unsupervised Noise2Noise strategy for noise reduction of optical coherence tomography images.
    Qiu B; Zeng S; Meng X; Jiang Z; You Y; Geng M; Li Z; Hu Y; Huang Z; Zhou C; Ren Q; Lu Y
    J Biophotonics; 2021 Nov; 14(11):e202100151. PubMed ID: 34383390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnosis of Pituitary Adenoma Biopsies by Ultrahigh Resolution Optical Coherence Tomography Using Neuronal Networks.
    Micko A; Placzek F; Fonollà R; Winklehner M; Sentosa R; Krause A; Vila G; Höftberger R; Andreana M; Drexler W; Leitgeb RA; Unterhuber A; Wolfsberger S
    Front Endocrinol (Lausanne); 2021; 12():730100. PubMed ID: 34733239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of optical coherence micro-elastography as a method to visualize micro-architecture in human axillary lymph nodes.
    Kennedy KM; Chin L; Wijesinghe P; McLaughlin RA; Latham B; Sampson DD; Saunders CM; Kennedy BF
    BMC Cancer; 2016 Nov; 16(1):874. PubMed ID: 27829404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated classification of coronary plaque calcification in OCT pullbacks with 3D deep neural networks.
    He C; Wang J; Yin Y; Li Z
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32914606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biopsy-free in vivo virtual histology of skin using deep learning.
    Li J; Garfinkel J; Zhang X; Wu D; Zhang Y; de Haan K; Wang H; Liu T; Bai B; Rivenson Y; Rubinstein G; Scumpia PO; Ozcan A
    Light Sci Appl; 2021 Nov; 10(1):233. PubMed ID: 34795202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of line-field confocal optical coherence tomography images with histological sections: Validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness.
    Pedrazzani M; Breugnot J; Rouaud-Tinguely P; Cazalas M; Davis A; Bordes S; Dubois A; Closs B
    Skin Res Technol; 2020 May; 26(3):398-404. PubMed ID: 31799766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intraoperative Use of Wide-Field Optical Coherence Tomography to Evaluate Tissue Microstructure in the Oral Cavity and Oropharynx.
    Badhey AK; Schwarz JS; Laitman BM; Veremis BM; Westra WH; Yao M; Teng MS; Genden EM; Miles BA
    JAMA Otolaryngol Head Neck Surg; 2023 Jan; 149(1):71-78. PubMed ID: 36454583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detecting mouse squamous cell carcinoma from submicron full-field optical coherence tomography images by deep learning.
    Ho CJ; Calderon-Delgado M; Chan CC; Lin MY; Tjiu JW; Huang SL; Chen HH
    J Biophotonics; 2021 Jan; 14(1):e202000271. PubMed ID: 32888382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Volumetric three-dimensional reconstruction and segmentation of spectral-domain OCT.
    Aaker GD; Gracia L; Myung JS; Borcherding V; Banfelder JR; D'Amico DJ; Kiss S
    Ophthalmic Surg Lasers Imaging; 2011 Jul; 42 Suppl():S116-20. PubMed ID: 21790107
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Super-resolution technology to simultaneously improve optical & digital resolution of optical coherence tomography via deep learning.
    Cao S; Yao X; Koirala N; Brott B; Litovsky S; Ling Y; Gan Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1879-1882. PubMed ID: 33018367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.
    Yao X; Gan Y; Chang E; Hibshoosh H; Feldman S; Hendon C
    Lasers Surg Med; 2017 Mar; 49(3):258-269. PubMed ID: 28264146
    [TBL] [Abstract][Full Text] [Related]  

  • 37. POST-TREATMENT PREDICTION OF OPTICAL COHERENCE TOMOGRAPHY USING A CONDITIONAL GENERATIVE ADVERSARIAL NETWORK IN AGE-RELATED MACULAR DEGENERATION.
    Lee H; Kim S; Kim MA; Chung H; Kim HC
    Retina; 2021 Mar; 41(3):572-580. PubMed ID: 32568984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification.
    Mesa KJ; Selmic LE; Pande P; Monroy GL; Reagan J; Samuelson J; Driskell E; Li J; Marjanovic M; Chaney EJ; Boppart SA
    Lasers Surg Med; 2017 Mar; 49(3):240-248. PubMed ID: 28319274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of Generative Adversarial Networks for High-Resolution Synthetic Image Generation of Circumpapillary Optical Coherence Tomography Images for Glaucoma.
    Sreejith Kumar AJ; Chong RS; Crowston JG; Chua J; Bujor I; Husain R; Vithana EN; Girard MJA; Ting DSW; Cheng CY; Aung T; Popa-Cherecheanu A; Schmetterer L; Wong D
    JAMA Ophthalmol; 2022 Oct; 140(10):974-981. PubMed ID: 36048435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review of generative adversarial network applications in optical coherence tomography image analysis.
    Kugelman J; Alonso-Caneiro D; Read SA; Collins MJ
    J Optom; 2022; 15 Suppl 1(Suppl 1):S1-S11. PubMed ID: 36241526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.