These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38598783)

  • 1. Scaling the Functional Nanopore (FuN) Screen: Systematic Evaluation of Self-Assembling Membrane Peptides and Extension with a K
    Eisenhauer K; Weber W; Kemp P; Gebhardt C; Kaufmann M; Tewes N; Zhdanova H; Tietze A; Rauh O; Stein V
    ACS Synth Biol; 2024 Apr; 13(4):1382-1392. PubMed ID: 38598783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Nanopore Screen: A Versatile High-Throughput Assay to Study and Engineer Protein Nanopores in
    Weber W; Roeder M; Probanowski T; Yang J; Abujubara H; Koeppl H; Tietze A; Stein V
    ACS Synth Biol; 2022 Jun; 11(6):2070-2079. PubMed ID: 35604782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid bilayer coated Al(2)O(3) nanopore sensors: towards a hybrid biological solid-state nanopore.
    Venkatesan BM; Polans J; Comer J; Sridhar S; Wendell D; Aksimentiev A; Bashir R
    Biomed Microdevices; 2011 Aug; 13(4):671-82. PubMed ID: 21487665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of nanopore-spanning lipid bilayers through liposome fusion.
    Kumar K; Isa L; Egner A; Schmidt R; Textor M; Reimhult E
    Langmuir; 2011 Sep; 27(17):10920-8. PubMed ID: 21749115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.
    Urban M; Vor der Brüggen M; Tampé R
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Nanopore Sensor Design Using Electrical and Optical Analyses.
    Mayse LA; Imran A; Wang Y; Ahmad M; Oot RA; Wilkens S; Movileanu L
    ACS Nano; 2023 Jun; 17(11):10857-10871. PubMed ID: 37261404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of solid-state nanopores into a functional device designed for electrical and optical cross-monitoring.
    Marchand R; Thibault C; Carcenac F; Vieu C; Trévisiol E
    Biomed Microdevices; 2017 Sep; 19(3):60. PubMed ID: 28677098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution discrimination of homologous and isomeric proteinogenic amino acids in nanopore sensors with ultrashort single-walled carbon nanotubes.
    Peng W; Yan S; Zhou K; Wu HC; Liu L; Zhao Y
    Nat Commun; 2023 May; 14(1):2662. PubMed ID: 37160961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers.
    Eggenberger OM; Leriche G; Koyanagi T; Ying C; Houghtaling J; Schroeder TBH; Yang J; Li J; Hall A; Mayer M
    Nanotechnology; 2019 Aug; 30(32):325504. PubMed ID: 30991368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors.
    Cressiot B; Greive SJ; Mojtabavi M; Antson AA; Wanunu M
    Nat Commun; 2018 Nov; 9(1):4652. PubMed ID: 30405123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Blockades of Proteins inside Nanopores for Real-Time Metabolome Analysis.
    Zernia S; van der Heide NJ; Galenkamp NS; Gouridis G; Maglia G
    ACS Nano; 2020 Feb; 14(2):2296-2307. PubMed ID: 32003969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore sensors: from hybrid to abiotic systems.
    Kocer A; Tauk L; Déjardin P
    Biosens Bioelectron; 2012; 38(1):1-10. PubMed ID: 22749726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.
    Lynch CI; Rao S; Sansom MSP
    Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deconvoluting the Effect of Cell-Penetrating Peptides for Enhanced and Controlled Insertion of Large-Scale DNA Nanopores.
    Zhang X; Malle MG; Thomsen RP; Sørensen RS; Sørensen EW; Hatzakis NS; Kjems J
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):18422-18433. PubMed ID: 38573069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage Gating of a Biomimetic Nanopore: Electrowetting of a Hydrophobic Barrier.
    Trick JL; Song C; Wallace EJ; Sansom MS
    ACS Nano; 2017 Feb; 11(2):1840-1847. PubMed ID: 28141923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.
    Diederichs T; Nguyen QH; Urban M; Tampé R; Tornow M
    Nano Lett; 2018 Jun; 18(6):3901-3910. PubMed ID: 29741381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide.
    Lella M; Mahalakshmi R
    J Phys Chem Lett; 2016 Jul; 7(13):2298-303. PubMed ID: 27257735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor.
    Liu L; Yang C; Zhao K; Li J; Wu HC
    Nat Commun; 2013; 4():2989. PubMed ID: 24352224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.