These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38598855)

  • 1. Natural and Engineered Guide RNA-Directed Transposition with CRISPR-Associated Tn7-Like Transposons.
    Hsieh SC; Peters JE
    Annu Rev Biochem; 2024 Aug; 93(1):139-161. PubMed ID: 38598855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary and mechanistic diversity of Type I-F CRISPR-associated transposons.
    Klompe SE; Jaber N; Beh LY; Mohabir JT; Bernheim A; Sternberg SH
    Mol Cell; 2022 Feb; 82(3):616-628.e5. PubMed ID: 35051352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guide RNA Categorization Enables Target Site Choice in Tn7-CRISPR-Cas Transposons.
    Petassi MT; Hsieh SC; Peters JE
    Cell; 2020 Dec; 183(7):1757-1771.e18. PubMed ID: 33271061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond.
    Peters JE
    Mol Microbiol; 2019 Dec; 112(6):1635-1644. PubMed ID: 31502713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery and characterization of novel type I-D CRISPR-guided transposons identified among diverse Tn7-like elements in cyanobacteria.
    Hsieh SC; Peters JE
    Nucleic Acids Res; 2023 Jan; 51(2):765-782. PubMed ID: 36537206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metagenomic discovery of CRISPR-associated transposons.
    Rybarski JR; Hu K; Hill AM; Wilke CO; Finkelstein IJ
    Proc Natl Acad Sci U S A; 2021 Dec; 118(49):. PubMed ID: 34845024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recruitment of CRISPR-Cas systems by Tn7-like transposons.
    Peters JE; Makarova KS; Shmakov S; Koonin EV
    Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7358-E7366. PubMed ID: 28811374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual modes of CRISPR-associated transposon homing.
    Saito M; Ladha A; Strecker J; Faure G; Neumann E; Altae-Tran H; Macrae RK; Zhang F
    Cell; 2021 Apr; 184(9):2441-2453.e18. PubMed ID: 33770501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the holo CRISPR RNA-guided transposon integration complex.
    Park JU; Tsai AW; Rizo AN; Truong VH; Wellner TX; Schargel RD; Kellogg EH
    Nature; 2023 Jan; 613(7945):775-782. PubMed ID: 36442503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
    Klompe SE; Vo PLH; Halpin-Healy TS; Sternberg SH
    Nature; 2019 Jul; 571(7764):219-225. PubMed ID: 31189177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shooting the messenger: RNA-targetting CRISPR-Cas systems.
    Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational landscape of the type V-K CRISPR-associated transposon integration assembly.
    Tenjo-Castaño F; Sofos N; Stutzke LS; Temperini P; Fuglsang A; Pape T; Mesa P; Montoya G
    Mol Cell; 2024 Jun; 84(12):2353-2367.e5. PubMed ID: 38834066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
    Koonin EV; Makarova KS
    Genome Biol Evol; 2017 Oct; 9(10):2812-2825. PubMed ID: 28985291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target site selection and remodelling by type V CRISPR-transposon systems.
    Querques I; Schmitz M; Oberli S; Chanez C; Jinek M
    Nature; 2021 Nov; 599(7885):497-502. PubMed ID: 34759315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome editing using CRISPR, CAST, and Fanzor systems.
    Song B; Bae S
    Mol Cells; 2024 Jul; 47(7):100086. PubMed ID: 38909984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-guided DNA insertion with CRISPR-associated transposases.
    Strecker J; Ladha A; Gardner Z; Schmid-Burgk JL; Makarova KS; Koonin EV; Zhang F
    Science; 2019 Jul; 365(6448):48-53. PubMed ID: 31171706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Associated Transposase for Targeted Mutagenesis in Diverse Proteobacteria.
    Trujillo Rodríguez L; Ellington AJ; Reisch CR; Chevrette MG
    ACS Synth Biol; 2023 Jul; 12(7):1989-2003. PubMed ID: 37368499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modularity and diversity of target selectors in Tn7 transposons.
    Faure G; Saito M; Benler S; Peng I; Wolf YI; Strecker J; Altae-Tran H; Neumann E; Li D; Makarova KS; Macrae RK; Koonin EV; Zhang F
    Mol Cell; 2023 Jun; 83(12):2122-2136.e10. PubMed ID: 37267947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering.
    Vo PLH; Ronda C; Klompe SE; Chen EE; Acree C; Wang HH; Sternberg SH
    Nat Biotechnol; 2021 Apr; 39(4):480-489. PubMed ID: 33230293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-guided genome engineering: paradigm shift towards transposons.
    Chang CW; Truong VA; Pham NN; Hu YC
    Trends Biotechnol; 2024 Aug; 42(8):970-985. PubMed ID: 38443218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.