These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. Chen SP; Wang HH CRISPR J; 2019 Dec; 2(6):376-394. PubMed ID: 31742433 [TBL] [Abstract][Full Text] [Related]
24. Transposase-assisted target-site integration for efficient plant genome engineering. Liu P; Panda K; Edwards SA; Swanson R; Yi H; Pandesha P; Hung YH; Klaas G; Ye X; Collins MV; Renken KN; Gilbertson LA; Veena V; Hancock CN; Slotkin RK Nature; 2024 Jul; 631(8021):593-600. PubMed ID: 38926583 [TBL] [Abstract][Full Text] [Related]
25. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Murugan K; Babu K; Sundaresan R; Rajan R; Sashital DG Mol Cell; 2017 Oct; 68(1):15-25. PubMed ID: 28985502 [TBL] [Abstract][Full Text] [Related]
26. Distinct horizontal transfer mechanisms for type I and type V CRISPR-associated transposons. Hu K; Chou CW; Wilke CO; Finkelstein IJ Nat Commun; 2024 Aug; 15(1):6653. PubMed ID: 39103341 [TBL] [Abstract][Full Text] [Related]
27. Comment on "RNA-guided DNA insertion with CRISPR-associated transposases". Rice PA; Craig NL; Dyda F Science; 2020 Jun; 368(6495):. PubMed ID: 32499410 [TBL] [Abstract][Full Text] [Related]
28. CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. McDonald ND; Regmi A; Morreale DP; Borowski JD; Boyd EF BMC Genomics; 2019 Feb; 20(1):105. PubMed ID: 30717668 [TBL] [Abstract][Full Text] [Related]
34. CRISPR-Associated Transposase System Can Insert Multiple Copies of Donor DNA into the Same Target Locus. Yang J; Yang J; Zhang Y; Yang S; Zhang J; Jiang Y; Yang S CRISPR J; 2021 Dec; 4(6):789-798. PubMed ID: 34847728 [TBL] [Abstract][Full Text] [Related]
35. Engineering the Delivery System for CRISPR-Based Genome Editing. Glass Z; Lee M; Li Y; Xu Q Trends Biotechnol; 2018 Feb; 36(2):173-185. PubMed ID: 29305085 [TBL] [Abstract][Full Text] [Related]
36. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria. Hidalgo-Cantabrana C; Goh YJ; Barrangou R J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168 [TBL] [Abstract][Full Text] [Related]
37. Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. Liu Q; Zhang H; Huang X FEBS J; 2020 Feb; 287(4):626-644. PubMed ID: 31730297 [TBL] [Abstract][Full Text] [Related]
38. Anti-CRISPR proteins: Counterattack of phages on bacterial defense (CRISPR/Cas) system. Chaudhary K; Chattopadhyay A; Pratap D J Cell Physiol; 2018 Jan; 233(1):57-59. PubMed ID: 28247934 [TBL] [Abstract][Full Text] [Related]
39. CRISPR-Cas systems: ushering in the new genome editing era. Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520 [TBL] [Abstract][Full Text] [Related]
40. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. Ganguly C; Rostami S; Long K; Aribam SD; Rajan R J Biol Chem; 2024 Jun; 300(6):107295. PubMed ID: 38641067 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]