These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38598944)

  • 21. Topological similarity between the 2μm plasmid partitioning locus and the budding yeast centromere: evidence for a common evolutionary origin?
    Jayaram M; Chang KM; Ma CH; Huang CC; Liu YT; Sau S
    Biochem Soc Trans; 2013 Apr; 41(2):501-7. PubMed ID: 23514143
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insights into the DNA sequence elements required for partitioning and copy number control of the yeast 2-micron plasmid.
    McQuaid ME; Mereshchuk A; Dobson MJ
    Curr Genet; 2019 Aug; 65(4):887-892. PubMed ID: 30915516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hitchhiking on chromosomes: A persistence strategy shared by diverse selfish DNA elements.
    Sau S; Ghosh SK; Liu YT; Ma CH; Jayaram M
    Plasmid; 2019 Mar; 102():19-28. PubMed ID: 30726706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast 2 micron plasmid: strategies for the survival of a selfish DNA.
    Mead DJ; Gardner DC; Oliver SG
    Mol Gen Genet; 1986 Dec; 205(3):417-21. PubMed ID: 3550381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Movement of shuttle plasmids from Escherichia coli into yeasts other than Saccharomyces cerevisiae using trans-kingdom conjugation.
    Hayman GT; Bolen PL
    Plasmid; 1993 Nov; 30(3):251-7. PubMed ID: 8302932
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hitchhiker's guide to survival finally makes CENs.
    Malik HS
    J Cell Biol; 2006 Sep; 174(6):747-9. PubMed ID: 16966417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polymorphism within the nuclear and 2 micron genomes of Saccharomyces cerevisiae.
    Rank GH; Casey GP; Xiao W; Pringle AT
    Curr Genet; 1991 Aug; 20(3):189-94. PubMed ID: 1934125
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Flp-SUMO hybrid recombinase reveals multi-layered copy number control of a selfish DNA element through post-translational modification.
    Ma CH; Su BY; Maciaszek A; Fan HF; Guga P; Jayaram M
    PLoS Genet; 2019 Jun; 15(6):e1008193. PubMed ID: 31242181
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
    Kleiman M; Tannenbaum E
    Theory Biosci; 2009 Nov; 128(4):249-85. PubMed ID: 19902285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stable propagation of 'selfish' genetic elements.
    Velmurugan S; Mehta S; Uzri D; Jayaram M
    J Biosci; 2003 Sep; 28(5):623-36. PubMed ID: 14517366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From baker's yeast to genetically modified budding yeasts: the scientific evolution of bioethanol industry from sugarcane.
    Ceccato-Antonini SR; Covre EA
    FEMS Yeast Res; 2021 Jan; 20(8):. PubMed ID: 33406233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for Darwinian selection of the 2-micron plasmid STB locus in Saccharomyces cerevisiae.
    Rank GH; Xiao W; Arndt GM
    Genome; 1994 Feb; 37(1):12-8. PubMed ID: 8181732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Transformation of Hansenula polymorpha, Pichia guilliermondii, Williopsis saturnus yeasts by a plasmid carrying the ADE2 gene of Saccharomyces cerevisiae].
    Neĭstat MA; Alenin VV; Tolstorukov II
    Mol Gen Mikrobiol Virusol; 1986 Dec; (12):19-23. PubMed ID: 3543662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evolutionary biology through the lens of budding yeast comparative genomics.
    Marsit S; Leducq JB; Durand É; Marchant A; Filteau M; Landry CR
    Nat Rev Genet; 2017 Oct; 18(10):581-598. PubMed ID: 28714481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of recombinant plasmids containing the ars sequence of yeast extrachromosomal rDNA in several strains of Saccharomyces cerevisiae.
    Larionov V; Kouprina N; Karpova T
    Gene; 1984 May; 28(2):229-35. PubMed ID: 6376287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 2-micron circle plasmids do not reduce yeast life span.
    Falcon AA; Rios N; Aris JP
    FEMS Microbiol Lett; 2005 Sep; 250(2):245-51. PubMed ID: 16085372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An autonomously replicating sequence for use in a wide range of budding yeasts.
    Liachko I; Dunham MJ
    FEMS Yeast Res; 2014 Mar; 14(2):364-7. PubMed ID: 24205893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for cis- and trans-acting element coevolution of the 2-microns circle genome in Saccharomyces cerevisiae.
    Xiao W; Pelcher LE; Rank GH
    J Mol Evol; 1991 Feb; 32(2):145-52. PubMed ID: 1672551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms.
    Wolfe KH; Butler G
    Microbiol Mol Biol Rev; 2022 Jun; 86(2):e0000721. PubMed ID: 35195440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A user-friendly and streamlined protocol for CRISPR/Cas9 genome editing in budding yeast.
    Novarina D; Koutsoumpa A; Milias-Argeitis A
    STAR Protoc; 2022 Jun; 3(2):101358. PubMed ID: 35712010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.