These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38598960)
41. Adaptation and transformation planning for resilient social-ecological system in coastal wetland using spatial-temporal simulation. Song K; Choi YE; Han HJ; Chon J Sci Total Environ; 2021 Oct; 789():148007. PubMed ID: 34058586 [TBL] [Abstract][Full Text] [Related]
42. Lessons learned on the feasibility of coastal wetland restoration for blue carbon and co-benefits in Australia. Hagger V; Stewart-Sinclair P; Rossini RA; Adame MF; Glamore W; Lavery P; Waltham NJ; Lovelock CE J Environ Manage; 2024 Oct; 369():122287. PubMed ID: 39241589 [TBL] [Abstract][Full Text] [Related]
43. Upslope development of a tidal marsh as a function of upland land use. Anisfeld SC; Cooper KR; Kemp AC Glob Chang Biol; 2017 Feb; 23(2):755-766. PubMed ID: 27343840 [TBL] [Abstract][Full Text] [Related]
44. Will a rising sea sink some estuarine wetland ecosystems? Grenfell SE; Callaway RM; Grenfell MC; Bertelli CM; Mendzil AF; Tew I Sci Total Environ; 2016 Jun; 554-555():276-92. PubMed ID: 26956175 [TBL] [Abstract][Full Text] [Related]
45. A lifecycle model approach for predicting mangrove extent. Henderson B; Glamore W Sci Total Environ; 2024 Nov; 952():175962. PubMed ID: 39233084 [TBL] [Abstract][Full Text] [Related]
46. Climate change causes declines and greater extremes in wetland inundation in a region important for wetland birds. Londe DW; Davis CA; Loss SR; Robertson EP; Haukos DA; Hovick TJ Ecol Appl; 2024 Mar; 34(2):e2930. PubMed ID: 37941497 [TBL] [Abstract][Full Text] [Related]
47. Total ecosystem carbon stocks at the marine-terrestrial interface: Blue carbon of the Pacific Northwest Coast, United States. Kauffman JB; Giovanonni L; Kelly J; Dunstan N; Borde A; Diefenderfer H; Cornu C; Janousek C; Apple J; Brophy L Glob Chang Biol; 2020 Oct; 26(10):5679-5692. PubMed ID: 32779311 [TBL] [Abstract][Full Text] [Related]
48. Changing Tides: The Role of Natural and Anthropogenic Factors. Talke SA; Jay DA Ann Rev Mar Sci; 2020 Jan; 12():121-151. PubMed ID: 31479622 [TBL] [Abstract][Full Text] [Related]
49. Modelling hydrological effects of wetland restoration: a differentiated view. Staes J; Rubarenzya MH; Meire P; Willems P Water Sci Technol; 2009; 59(3):433-41. PubMed ID: 19213997 [TBL] [Abstract][Full Text] [Related]
50. Drivers of variability in Blue Carbon stocks and burial rates across European estuarine habitats. Mazarrasa I; Neto JM; Bouma TJ; Grandjean T; Garcia-Orellana J; Masqué P; Recio M; Serrano Ó; Puente A; Juanes JA Sci Total Environ; 2023 Aug; 886():163957. PubMed ID: 37164078 [TBL] [Abstract][Full Text] [Related]
51. The impact assessment of hydro-biological connectivity changes on the estuary wetland through the ecological restoration project in the Yellow River Delta, China. Jiang Y; Wang Y; Zhou D; Ke Y; Bai J; Li W; Yan J Sci Total Environ; 2021 Mar; 758():143706. PubMed ID: 33250237 [TBL] [Abstract][Full Text] [Related]
52. A Conterminous USA-Scale Map of Relative Tidal Marsh Elevation. Holmquist JR; Windham-Myers L Estuaries Coast; 2022; 45(6):1596-1614. PubMed ID: 35903080 [TBL] [Abstract][Full Text] [Related]
53. Identifying driving hydrogeomorphic factors of coastal wetland downgrading using random forest classification models. He K; Li W; Zhang Y; Sun G; McNulty SG; Flanagan NE; Richardson CJ Sci Total Environ; 2023 Oct; 894():164995. PubMed ID: 37343878 [TBL] [Abstract][Full Text] [Related]
54. Wetland phosphorus dynamics and phosphorus removal potential. Skinner M Water Environ Res; 2022 Oct; 94(10):e10799. PubMed ID: 36259138 [TBL] [Abstract][Full Text] [Related]
55. Tidal Marshes across a Chesapeake Bay Subestuary Are Not Keeping up with Sea-Level Rise. Beckett LH; Baldwin AH; Kearney MS PLoS One; 2016; 11(7):e0159753. PubMed ID: 27467784 [TBL] [Abstract][Full Text] [Related]
56. Modeling the Economic Value of Blue Carbon in Delaware Estuary Wetlands: Historic Estimates and Future Projections. Carr EW; Shirazi Y; Parsons GR; Hoagland P; Sommerfield CK J Environ Manage; 2018 Jan; 206():40-50. PubMed ID: 29055848 [TBL] [Abstract][Full Text] [Related]
57. Quantifying the role of saltmarsh as a vulnerable carbon sink: A case study from Northern Portugal. Cunha J; Cabecinha E; Villasante S; Gonçalves JA; Balbi S; Elliott M; Ramos S Sci Total Environ; 2024 May; 923():171443. PubMed ID: 38447727 [TBL] [Abstract][Full Text] [Related]
58. An assessment of anthropogenic and climatic stressors on estuaries using a spatio-temporal GIS-modelling approach for sustainability: Towamba estuary, southeastern Australia. Al-Nasrawi AKM; Hamylton SM; Jones BG Environ Monit Assess; 2018 Jun; 190(7):375. PubMed ID: 29862438 [TBL] [Abstract][Full Text] [Related]
59. N Gao D; Hou L; Liu M; Zheng Y; Yin G; Niu Y Environ Res; 2022 Apr; 205():112432. PubMed ID: 34843720 [TBL] [Abstract][Full Text] [Related]
60. Tides affect plant connectivity in coastal wetlands on a small-patch scale. Wu Y; Zhao S; Dai L; Liu Y; Xie L; Zhang Z; Zhang M Chemosphere; 2021 Jan; 262():127977. PubMed ID: 33182103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]