These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38598996)

  • 1. Variations in proton transfer pathways and energetics on pristine and defect-rich quartz surfaces in water: Insights into the bimodal acidities of quartz.
    Yuan K; Rampal N; Irle S; Criscenti LJ; Lee SS; Adapa S; Stack AG
    J Colloid Interface Sci; 2024 Jul; 666():232-243. PubMed ID: 38598996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Film Structure and Wettability of Different Quartz Surfaces: Hydrogen Bonding Across Various Cutting Planes.
    Kobayashi K; Firoozabadi A
    Langmuir; 2024 Mar; 40(9):4635-4645. PubMed ID: 38377565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface acidity of quartz: understanding the crystallographic control.
    Liu X; Cheng J; Lu X; Wang R
    Phys Chem Chem Phys; 2014 Dec; 16(48):26909-16. PubMed ID: 25376935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process.
    Lowe BM; Skylaris CK; Green NG
    J Colloid Interface Sci; 2015 Aug; 451():231-44. PubMed ID: 25898118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Silica-Water Interface: How the Silanols Determine the Surface Acidity and Modulate the Water Properties.
    Sulpizi M; Gaigeot MP; Sprik M
    J Chem Theory Comput; 2012 Mar; 8(3):1037-47. PubMed ID: 26593364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computing Surface Acidity Constants of Proton Hopping Groups from Density Functional Theory-Based Molecular Dynamics: Application to the SnO
    Jia M; Zhang C; Cox SJ; Sprik M; Cheng J
    J Chem Theory Comput; 2020 Oct; 16(10):6520-6527. PubMed ID: 32794753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of pristine and hydrolyzed quartz surfaces.
    Murashov VV
    J Phys Chem B; 2005 Mar; 109(9):4144-51. PubMed ID: 16851475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics.
    Cheng J; Sprik M
    J Chem Theory Comput; 2010 Mar; 6(3):880-9. PubMed ID: 26613315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ζ potential evidences silanol heterogeneity induced by metal contaminants at the quartz surface: Implications in membrane damage.
    Pavan C; Turci F; Tomatis M; Ghiazza M; Lison D; Fubini B
    Colloids Surf B Biointerfaces; 2017 Sep; 157():449-455. PubMed ID: 28646781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amorphous silica-liquid water interface studied by ab initio molecular dynamics (AIMD): local organization in global disorder.
    Cimas Á; Tielens F; Sulpizi M; Gaigeot MP; Costa D
    J Phys Condens Matter; 2014 Jun; 26(24):244106. PubMed ID: 24863440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative effects at water-crystalline silica interfaces strengthen surface silanol hydrogen bonding. An ab initio molecular dynamics study.
    Musso F; Mignon P; Ugliengo P; Sodupe M
    Phys Chem Chem Phys; 2012 Aug; 14(30):10507-14. PubMed ID: 22622867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations.
    Murdachaew G; Nathanson GM; Benny Gerber R; Halonen L
    Phys Chem Chem Phys; 2016 Nov; 18(43):29756-29770. PubMed ID: 27777998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct assessment of the acidity of individual surface hydroxyls.
    Wagner M; Meyer B; Setvin M; Schmid M; Diebold U
    Nature; 2021 Apr; 592(7856):722-725. PubMed ID: 33911267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for low-temperature direct bonding of Si/Si and quartz/quartz
    Xu J; Wang C; Wang T; Wang Y; Kang Q; Liu Y; Tian Y
    RSC Adv; 2018 Mar; 8(21):11528-11535. PubMed ID: 35542819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the bimodal acid-base behavior of the water-silica interface from first principles.
    Leung K; Nielsen IM; Criscenti LJ
    J Am Chem Soc; 2009 Dec; 131(51):18358-65. PubMed ID: 19947602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction with Water Vapor Defines Surface Reconstruction and Membranolytic Activity of Quartz Milled in Different Molecular Environments.
    Bellomo C; Lagostina V; Pavan C; Paganini MC; Turci F
    Small; 2024 May; 20(21):e2308369. PubMed ID: 38102095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of hydration, dissolution and nucleation processes at the alpha-quartz (0001) surface in liquid water.
    Du Z; de Leeuw NH
    Dalton Trans; 2006 Jun; (22):2623-34. PubMed ID: 16804574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proton transfer reactions and hydrogen-bond networks in protein environments.
    Ishikita H; Saito K
    J R Soc Interface; 2014 Feb; 11(91):20130518. PubMed ID: 24284891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density functional theory simulation of hydrogen-bonding structure and vibrational densities of states at the quartz (101)-water interface and its relation to dissolution as a function of solution pH and ionic strength.
    DelloStritto MJ; Kubicki J; Sofo JO
    J Phys Condens Matter; 2014 Jun; 26(24):244101. PubMed ID: 24862652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.