BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

36 related articles for article (PubMed ID: 38599069)

  • 1. An efficient Parkinson's disease detection framework: Leveraging time-frequency representation and AlexNet convolutional neural network.
    Siuly S; Khare SK; Kabir E; Sadiq MT; Wang H
    Comput Biol Med; 2024 May; 174():108462. PubMed ID: 38599069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parkinson's Disease Recognition Using Decorrelated Convolutional Neural Networks: Addressing Imbalance and Scanner Bias in rs-fMRI Data.
    Patil P; Ford WR
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated diagnosis of schizophrenia based on spatial-temporal residual graph convolutional network.
    Xu X; Zhu G; Li B; Lin P; Li X; Wang Z
    Biomed Eng Online; 2024 Jun; 23(1):55. PubMed ID: 38886737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GCTNet: a graph convolutional transformer network for major depressive disorder detection based on EEG signals.
    Wang Y; Peng Y; Han M; Liu X; Niu H; Cheng J; Chang S; Liu T
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38788706
    [No Abstract]   [Full Text] [Related]  

  • 5. Epilepsy detection based on multi-head self-attention mechanism.
    Ru Y; An G; Wei Z; Chen H
    PLoS One; 2024; 19(6):e0305166. PubMed ID: 38861543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEGDiR: Electroencephalogram denoising network for temporal information storage and global modeling through Retentive Network.
    Wang B; Deng F; Jiang P
    Comput Biol Med; 2024 Jul; 177():108626. PubMed ID: 38810475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Parkinson disease using multiclass machine learning approach.
    Srinivasan S; Ramadass P; Mathivanan SK; Panneer Selvam K; Shivahare BD; Shah MA
    Sci Rep; 2024 Jun; 14(1):13813. PubMed ID: 38877028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Subject-Driven Cognitive States from EEG Signals for Cognitive Brain-Computer Interface.
    Huang D; Wang Y; Fan L; Yu Y; Zhao Z; Zeng P; Wang K; Li N; Shen H
    Brain Sci; 2024 May; 14(5):. PubMed ID: 38790476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Way hybrid analysis using clinical and magnetic resonance imaging for early diagnosis of Alzheimer's disease.
    Farhatullah ; Chen X; Zeng D; Mehmood A; Khan R; Shahid F; Ibrahim MM
    Brain Res; 2024 May; 1840():149021. PubMed ID: 38810771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network.
    Tigga NP; Garg S; Goyal N; Raj J; Das B
    Technol Health Care; 2024 Jun; ():. PubMed ID: 38943414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectral Time-Varying Pattern Causality and Its Application.
    Mi Y; Lin A
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3742-3749. PubMed ID: 38416609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Raspberry Pi-Based Traumatic Brain Injury Detection System for Single-Channel Electroencephalogram.
    Dhillon NS; Sutandi A; Vishwanath M; Lim MM; Cao H; Si D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LCADNet: a novel light CNN architecture for EEG-based Alzheimer disease detection.
    Kachare P; Puri D; Sangle SB; Al-Shourbaji I; Jabbari A; Kirner R; Alameen A; Migdady H; Abualigah L
    Phys Eng Sci Med; 2024 Jun; ():. PubMed ID: 38862778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised anomaly detection by densely contrastive learning for time series data.
    Zhu W; Li W; Dorsey ER; Luo J
    Neural Netw; 2023 Nov; 168():450-458. PubMed ID: 37806138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectual seizure detection using MBBF-GPSO with CNN network.
    Atal DK; Singh M
    Cogn Neurodyn; 2024 Jun; 18(3):907-918. PubMed ID: 38826653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional neural networks can detect orthostatic hypotension in Parkinson's disease using resting-state functional near-infrared spectroscopy data.
    Lee SH; Paik SH; Kang SY; Phillips Z; Kim JB; Kim BJ; Kim BM
    J Biophotonics; 2024 Jul; ():e202400138. PubMed ID: 38952169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brain-computer interfaces inspired spiking neural network model for depression stage identification.
    Ponrani MA; Anand M; Alsaadi M; Dutta AK; Fayaz R; Mathew S; Chaurasia MA; Sunila ; Bhende M
    J Neurosci Methods; 2024 Jun; 409():110203. PubMed ID: 38880343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting Parkinson's disease from shoe-mounted accelerometer sensors using convolutional neural networks optimized with modified metaheuristics.
    Jovanovic L; Damaševičius R; Matic R; Kabiljo M; Simic V; Kunjadic G; Antonijevic M; Zivkovic M; Bacanin N
    PeerJ Comput Sci; 2024; 10():e2031. PubMed ID: 38855236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement Learning-Based Adaptive Classification for Medication State Monitoring in Parkinson's Disease.
    Shuqair M; Jimenez-Shahed J; Ghoraani B
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 38968013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Quality Video Target Detection Based on EEG Signal Using Eye Movement Alignment.
    Shi J; Bi L; Xu X; Feleke AG; Fei W
    Cyborg Bionic Syst; 2024; 5():0121. PubMed ID: 38966125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.