These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38599269)
1. The influence of light intensities and micropollutants on the removal of total coliforms and E. coli from wastewater in a flat-panel photobioreactor. Pompei CME; Ruas G; Bolzani HR; Fernandes LM; Silva GHRD Environ Pollut; 2024 May; 349():123935. PubMed ID: 38599269 [TBL] [Abstract][Full Text] [Related]
2. Nutrient and pathogen removal from anaerobically treated black water by microalgae. Slompo NDM; Quartaroli L; Fernandes TV; Silva GHRD; Daniel LA J Environ Manage; 2020 Aug; 268():110693. PubMed ID: 32510435 [TBL] [Abstract][Full Text] [Related]
3. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. de Mendonça HV; Ometto JPHB; Otenio MH; Marques IPR; Dos Reis AJD Sci Total Environ; 2018 Aug; 633():1-11. PubMed ID: 29571041 [TBL] [Abstract][Full Text] [Related]
4. Outdoor flat-panel membrane photobioreactor to treat the effluent of an anaerobic membrane bioreactor. Influence of operating, design, and environmental conditions. González-Camejo J; Barat R; Ruano MV; Seco A; Ferrer J Water Sci Technol; 2018 Aug; 78(1-2):195-206. PubMed ID: 30101802 [TBL] [Abstract][Full Text] [Related]
5. Effects of photoperiod on nutrient removal, biomass production, and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Lee CS; Lee SA; Ko SR; Oh HM; Ahn CY Water Res; 2015 Jan; 68():680-91. PubMed ID: 25462772 [TBL] [Abstract][Full Text] [Related]
6. Analysis of a photobioreactor scaling up for tertiary wastewater treatment: denitrification, phosphorus removal, and microalgae production. Villaseñor Camacho J; Fernández Marchante CM; Rodríguez Romero L Environ Sci Pollut Res Int; 2018 Oct; 25(29):29279-29286. PubMed ID: 30121758 [TBL] [Abstract][Full Text] [Related]
7. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Sukačová K; Trtílek M; Rataj T Water Res; 2015 Mar; 71():55-63. PubMed ID: 25594825 [TBL] [Abstract][Full Text] [Related]
8. Nutrient removal in an algal membrane photobioreactor: effects of wastewater composition and light/dark cycle. Praveen P; Loh KC Appl Microbiol Biotechnol; 2019 Apr; 103(8):3571-3580. PubMed ID: 30809712 [TBL] [Abstract][Full Text] [Related]
9. Growth of Tetraselmis suecica in a tubular photobioreactor on wastewater from a fish farm. Michels MH; Vaskoska M; Vermuë MH; Wijffels RH Water Res; 2014 Nov; 65():290-6. PubMed ID: 25150516 [TBL] [Abstract][Full Text] [Related]
10. Wastewater nutrient removal in a mixed microalgae-bacteria culture: effect of light and temperature on the microalgae-bacteria competition. González-Camejo J; Barat R; Pachés M; Murgui M; Seco A; Ferrer J Environ Technol; 2018 Feb; 39(4):503-515. PubMed ID: 28274182 [TBL] [Abstract][Full Text] [Related]
11. Removal of contaminants of emerging concern from urban wastewater in novel algal-bacterial photobioreactors. López-Serna R; Posadas E; García-Encina PA; Muñoz R Sci Total Environ; 2019 Apr; 662():32-40. PubMed ID: 30684900 [TBL] [Abstract][Full Text] [Related]
12. Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO Yaqoubnejad P; Rad HA; Taghavijeloudar M J Environ Manage; 2021 Nov; 298():113482. PubMed ID: 34385116 [TBL] [Abstract][Full Text] [Related]
13. Microalgae systems - environmental agents for wastewater treatment and further potential biomass valorisation. Amaro HM; Salgado EM; Nunes OC; Pires JCM; Esteves AF J Environ Manage; 2023 Jul; 337():117678. PubMed ID: 36948147 [TBL] [Abstract][Full Text] [Related]
15. A novel microbial fuel cell and photobioreactor system for continuous domestic wastewater treatment and bioelectricity generation. Jiang H; Luo S; Shi X; Dai M; Guo RB Biotechnol Lett; 2012 Jul; 34(7):1269-74. PubMed ID: 22421975 [TBL] [Abstract][Full Text] [Related]
16. The potential impact of an implementation of microalgae-based wastewater treatment on the energy balance of a municipal wastewater treatment plant in Central europe. Hasport N; Krahe D; Kuchendorf CM; Beier S; Theilen U Bioresour Technol; 2022 Mar; 347():126695. PubMed ID: 35017087 [TBL] [Abstract][Full Text] [Related]
17. Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Lee TH; Jang JK; Kim HW J Microbiol Biotechnol; 2017 Nov; 27(11):2010-2018. PubMed ID: 28870010 [TBL] [Abstract][Full Text] [Related]
18. Capabilities and mechanisms of microalgae on removing micropollutants from wastewater: A review. Liu R; Li S; Tu Y; Hao X J Environ Manage; 2021 May; 285():112149. PubMed ID: 33607565 [TBL] [Abstract][Full Text] [Related]
19. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Margot J; Kienle C; Magnet A; Weil M; Rossi L; de Alencastro LF; Abegglen C; Thonney D; Chèvre N; Schärer M; Barry DA Sci Total Environ; 2013 Sep; 461-462():480-98. PubMed ID: 23751332 [TBL] [Abstract][Full Text] [Related]
20. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Gupta S; Pawar SB; Pandey RA Sci Total Environ; 2019 Oct; 687():1107-1126. PubMed ID: 31412448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]