These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 38599397)
1. Root proliferation adaptation strategy improved maize productivity in the US Great Plains: Insights from crop simulation model under future climate change. Onyekwelu I; Sharda V Sci Total Environ; 2024 Jun; 927():172205. PubMed ID: 38599397 [TBL] [Abstract][Full Text] [Related]
2. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand. Boonwichai S; Shrestha S; Babel MS; Weesakul S; Datta A Sci Total Environ; 2019 Feb; 652():189-201. PubMed ID: 30366320 [TBL] [Abstract][Full Text] [Related]
4. Vulnerability of maize production under future climate change: possible adaptation strategies. Bannayan M; Paymard P; Ashraf B J Sci Food Agric; 2016 Oct; 96(13):4465-74. PubMed ID: 26847375 [TBL] [Abstract][Full Text] [Related]
5. Modelling adaptation strategies to reduce adverse impacts of climate change on maize cropping system in Northeast China. Jiang R; He W; He L; Yang JY; Qian B; Zhou W; He P Sci Rep; 2021 Jan; 11(1):810. PubMed ID: 33436721 [TBL] [Abstract][Full Text] [Related]
6. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. Liu L; Basso B PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907 [TBL] [Abstract][Full Text] [Related]
7. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
8. Evaluating area-specific adaptation strategies for rainfed maize under future climates of India. Subba Rao AVM; Sarath Chandran MA; Bal SK; Pramod VP; Sandeep VM; Manikandan N; Raju BMK; Prabhakar M; Islam A; Naresh Kumar S; Singh VK Sci Total Environ; 2022 Aug; 836():155511. PubMed ID: 35490805 [TBL] [Abstract][Full Text] [Related]
9. Climate change impact uncertainty assessment and adaptations for sustainable maize production using multi-crop and climate models. Yasin M; Ahmad A; Khaliq T; Habib-Ur-Rahman M; Niaz S; Gaiser T; Ghafoor I; Hassan HSU; Qasim M; Hoogenboom G Environ Sci Pollut Res Int; 2022 Mar; 29(13):18967-18988. PubMed ID: 34705205 [TBL] [Abstract][Full Text] [Related]
10. Climate change and maize yield in southern Africa: what can farm management do? Rurinda J; van Wijk MT; Mapfumo P; Descheemaeker K; Supit I; Giller KE Glob Chang Biol; 2015 Dec; 21(12):4588-601. PubMed ID: 26251975 [TBL] [Abstract][Full Text] [Related]
12. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
13. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.]. Li XF; Zhao HY; Zhu HX; Wang P; Wang QJ; Wang M; Li YG Ying Yong Sheng Tai Xue Bao; 2016 Aug; 27(8):2561-2570. PubMed ID: 29733144 [TBL] [Abstract][Full Text] [Related]
14. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Zhang Y; Wang Y; Niu H Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428 [TBL] [Abstract][Full Text] [Related]
15. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China. Lin Y; Wu W; Ge Q J Sci Food Agric; 2015 Nov; 95(14):2838-49. PubMed ID: 25428548 [TBL] [Abstract][Full Text] [Related]
16. Climate-adaptive crop distribution can feed food demand, improve water scarcity, and reduce greenhouse gas emissions. Su Z; Zhao J; Zhuang M; Liu Z; Zhao C; Pullens JWM; Liu K; Harrison MT; Yang X Sci Total Environ; 2024 Sep; 944():173819. PubMed ID: 38857807 [TBL] [Abstract][Full Text] [Related]
17. Management options for mid-century maize (Zea mays L.) in Ethiopia. Araya A; Prasad PVV; Gowda PH; Zambreski Z; Ciampitti IA Sci Total Environ; 2021 Mar; 758():143635. PubMed ID: 33248791 [TBL] [Abstract][Full Text] [Related]
18. Projective analysis of staple food crop productivity in adaptation to future climate change in China. Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124 [TBL] [Abstract][Full Text] [Related]
19. Modelling climate change impacts on maize yields under low nitrogen input conditions in sub-Saharan Africa. Falconnier GN; Corbeels M; Boote KJ; Affholder F; Adam M; MacCarthy DS; Ruane AC; Nendel C; Whitbread AM; Justes É; Ahuja LR; Akinseye FM; Alou IN; Amouzou KA; Anapalli SS; Baron C; Basso B; Baudron F; Bertuzzi P; Challinor AJ; Chen Y; Deryng D; Elsayed ML; Faye B; Gaiser T; Galdos M; Gayler S; Gerardeaux E; Giner M; Grant B; Hoogenboom G; Ibrahim ES; Kamali B; Kersebaum KC; Kim SH; van der Laan M; Leroux L; Lizaso JI; Maestrini B; Meier EA; Mequanint F; Ndoli A; Porter CH; Priesack E; Ripoche D; Sida TS; Singh U; Smith WN; Srivastava A; Sinha S; Tao F; Thorburn PJ; Timlin D; Traore B; Twine T; Webber H Glob Chang Biol; 2020 Oct; 26(10):5942-5964. PubMed ID: 32628332 [TBL] [Abstract][Full Text] [Related]
20. Climate change impact on wheat and maize growth in Ethiopia: A multi-model uncertainty analysis. Rettie FM; Gayler S; K D Weber T; Tesfaye K; Streck T PLoS One; 2022; 17(1):e0262951. PubMed ID: 35061854 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]