These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 38599406)
1. Enhancing biomass conversion to bioenergy with machine learning: Gains and problems. Wang R; He Z; Chen H; Guo S; Zhang S; Wang K; Wang M; Ho SH Sci Total Environ; 2024 Jun; 927():172310. PubMed ID: 38599406 [TBL] [Abstract][Full Text] [Related]
2. The role of machine learning to boost the bioenergy and biofuels conversion. Wang Z; Peng X; Xia A; Shah AA; Huang Y; Zhu X; Zhu X; Liao Q Bioresour Technol; 2022 Jan; 343():126099. PubMed ID: 34626766 [TBL] [Abstract][Full Text] [Related]
3. Production of biofuels from biomass: Predicting the energy employing artificial intelligence modelling. Meena M; Shubham S; Paritosh K; Pareek N; Vivekanand V Bioresour Technol; 2021 Nov; 340():125642. PubMed ID: 34315128 [TBL] [Abstract][Full Text] [Related]
4. Assessing global carbon sequestration and bioenergy potential from microalgae cultivation on marginal lands leveraging machine learning. Chen M; Chen Y; Zhang Q Sci Total Environ; 2024 Oct; 948():174462. PubMed ID: 38992374 [TBL] [Abstract][Full Text] [Related]
5. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. Kaniapan S; Pasupuleti J; Patma Nesan K; Abubackar HN; Umar HA; Oladosu TL; Bello SR; Rene ER Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329114 [TBL] [Abstract][Full Text] [Related]
6. Bioenergy production in Pakistan: Potential, progress, and prospect. Khan S; Nisar A; Wu B; Zhu QL; Wang YW; Hu GQ; He MX Sci Total Environ; 2022 Mar; 814():152872. PubMed ID: 34990677 [TBL] [Abstract][Full Text] [Related]
7. A review on global perspectives of sustainable development in bioenergy generation. Duarah P; Haldar D; Patel AK; Dong CD; Singhania RR; Purkait MK Bioresour Technol; 2022 Mar; 348():126791. PubMed ID: 35114366 [TBL] [Abstract][Full Text] [Related]
8. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Hoang AT; Nizetic S; Ong HC; Chong CT; Atabani AE; Pham VV J Environ Manage; 2021 Oct; 296():113194. PubMed ID: 34243094 [TBL] [Abstract][Full Text] [Related]
9. Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Dale VH; Kline KL; Wright LL; Perlack RD; Downing M; Graham RL Ecol Appl; 2011 Jun; 21(4):1039-54. PubMed ID: 21774412 [TBL] [Abstract][Full Text] [Related]
10. EU28 region's water security and the effect of bioenergy industry sustainability. Alsaleh M; Abdul-Rahim AS; Abdulwakil MM Environ Sci Pollut Res Int; 2021 Feb; 28(8):9346-9361. PubMed ID: 33141381 [TBL] [Abstract][Full Text] [Related]
11. Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review. Singh R; Kumar R; Sarangi PK; Kovalev AA; Vivekanand V Bioresour Technol; 2023 Feb; 369():128458. PubMed ID: 36503099 [TBL] [Abstract][Full Text] [Related]
12. A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. Deivayanai VC; Yaashikaa PR; Senthil Kumar P; Rangasamy G Bioresour Technol; 2022 Dec; 365():128166. PubMed ID: 36283663 [TBL] [Abstract][Full Text] [Related]
13. The global energy matrix and use of agricultural residues for bioenergy production: A review with inspiring insights that aim to contribute to deliver solutions for society and industrial sectors through suggestions for future research. Ribeiro GF; Junior AB Waste Manag Res; 2023 Aug; 41(8):1283-1304. PubMed ID: 36856060 [TBL] [Abstract][Full Text] [Related]
14. Harnessing the potential of agriculture biomass: reuse, transformation and applications in energy and environment. Niyogi A; Sarkar P; Bhattacharyya S; Pal S; Mukherjee S Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39023731 [TBL] [Abstract][Full Text] [Related]
15. Biomass utilization and production of biofuels from carbon neutral materials. Srivastava RK; Shetti NP; Reddy KR; Kwon EE; Nadagouda MN; Aminabhavi TM Environ Pollut; 2021 May; 276():116731. PubMed ID: 33607352 [TBL] [Abstract][Full Text] [Related]
16. Recent advances, current issues and future prospects of bioenergy production: A review. Liu T; Miao P; Shi Y; Tang KHD; Yap PS Sci Total Environ; 2022 Mar; 810():152181. PubMed ID: 34883167 [TBL] [Abstract][Full Text] [Related]
17. Biofuel supply chain management in the circular economy transition: An inclusive knowledge map of the field. Ranjbari M; Shams Esfandabadi Z; Ferraris A; Quatraro F; Rehan M; Nizami AS; Gupta VK; Lam SS; Aghbashlo M; Tabatabaei M Chemosphere; 2022 Jun; 296():133968. PubMed ID: 35181422 [TBL] [Abstract][Full Text] [Related]
18. A mini review on renewable sources for biofuel. Ho DP; Ngo HH; Guo W Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598 [TBL] [Abstract][Full Text] [Related]
19. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Kumar JA; Sathish S; Prabu D; Renita AA; Saravanan A; Deivayanai VC; Anish M; Jayaprabakar J; Baigenzhenov O; Hosseini-Bandegharaei A Chemosphere; 2023 Aug; 331():138680. PubMed ID: 37119925 [TBL] [Abstract][Full Text] [Related]
20. Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Kaur M; Kumar M; Sachdeva S; Puri SK Bioresour Technol; 2018 Mar; 251():390-402. PubMed ID: 29254877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]