These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 38599421)
21. Effect of the magnetic core in alginate/gum composite on adsorption of divalent copper, cadmium, and lead ions in the aqueous system. Elwakeel KZ; Ahmed MM; Akhdhar A; Alghamdi HM; Sulaiman MGM; Hamza MF; Khan ZA Int J Biol Macromol; 2023 Dec; 253(Pt 4):126884. PubMed ID: 37709221 [TBL] [Abstract][Full Text] [Related]
22. Effective removal of Cu(II) from water by three-dimensional composite microspheres based on chitosan/sodium alginate/silicon dioxide: Adsorption performance and mechanism. Yin H; Zhang M; Wang B; Zhang F Int J Biol Macromol; 2024 Oct; 277(Pt 4):134585. PubMed ID: 39122081 [TBL] [Abstract][Full Text] [Related]
23. Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb²⁺ in aqueous solutions by using a batch and continuous systems. Li X; Qi Y; Li Y; Zhang Y; He X; Wang Y Bioresour Technol; 2013 Aug; 142():611-9. PubMed ID: 23771001 [TBL] [Abstract][Full Text] [Related]
24. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Zhang X; Lin X; He Y; Chen Y; Luo X; Shang R Int J Biol Macromol; 2019 Mar; 124():418-428. PubMed ID: 30496862 [TBL] [Abstract][Full Text] [Related]
25. Recent advances in alginate-based composite gel spheres for removal of heavy metals. Sun R; Gao S; Zhang K; Cheng WT; Hu G Int J Biol Macromol; 2024 May; 268(Pt 2):131853. PubMed ID: 38679268 [TBL] [Abstract][Full Text] [Related]
26. Modification of chitosan/calcium alginate/Fe Yi X; Yang M; Mo L; Xu W; Wang S; He J; Gu J; Ou M; Xu X Environ Sci Pollut Res Int; 2018 Feb; 25(4):3922-3932. PubMed ID: 29177783 [TBL] [Abstract][Full Text] [Related]
27. Effect of biocomposite production factors on the development of an eco-friendly chitosan/alginate-based adsorbent with enhanced copper removal efficiency. Guerrero JD; Marchesini FA; Ulla MA; Gutierrez LB Int J Biol Macromol; 2023 Dec; 253(Pt 2):126416. PubMed ID: 37633556 [TBL] [Abstract][Full Text] [Related]
28. Novel magnetic polysaccharide/graphene oxide @Fe Wu Z; Deng W; Zhou W; Luo J Carbohydr Polym; 2019 Jul; 216():119-128. PubMed ID: 31047048 [TBL] [Abstract][Full Text] [Related]
29. Fabrication of magnetic bentonite/carboxymethyl chitosan/sodium alginate hydrogel beads for Cu (II) adsorption. Zhang H; Omer AM; Hu Z; Yang LY; Ji C; Ouyang XK Int J Biol Macromol; 2019 Aug; 135():490-500. PubMed ID: 31145956 [TBL] [Abstract][Full Text] [Related]
30. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions. Gao C; Wang XL; An QD; Xiao ZY; Zhai SR Carbohydr Polym; 2021 Mar; 256():117564. PubMed ID: 33483065 [TBL] [Abstract][Full Text] [Related]
31. Efficient removal of copper ions using a hydrogel bead triggered by the cationic hectorite clay and anionic sodium alginate. Tong D; Fang K; Yang H; Wang J; Zhou C; Yu W Environ Sci Pollut Res Int; 2019 Jun; 26(16):16482-16492. PubMed ID: 30982191 [TBL] [Abstract][Full Text] [Related]
32. Mechanically stable core-shell cellulose nanofibril/sodium alginate hydrogel beads with superior cu(II) removal capacity. Chen K; Qin F; Fang Z; Li G; Zhou J; Qiu X Int J Biol Macromol; 2022 Dec; 222(Pt A):1353-1363. PubMed ID: 36150570 [TBL] [Abstract][Full Text] [Related]
33. Enhancing copper and lead adsorption in water by in-situ generation of calcium carbonate on alginate/chitosan biocomposite surfaces. Guerrero JD; Arias ER; Gutierrez LB Int J Biol Macromol; 2024 May; 266(Pt 2):131110. PubMed ID: 38522694 [TBL] [Abstract][Full Text] [Related]
34. Remarkable adsorption of As(V) by Fe Chen D; Song Y; Li H; Ma M; Nan F; Huang P; Zhan W Int J Biol Macromol; 2024 Jan; 254(Pt 3):127994. PubMed ID: 37952800 [TBL] [Abstract][Full Text] [Related]
35. Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. Ngah WS; Fatinathan S J Environ Sci (China); 2010; 22(3):338-46. PubMed ID: 20614774 [TBL] [Abstract][Full Text] [Related]
36. Adsorption studies of tetracycline hydrochloride and diclofenac sodium on NH Dai K; Chen L; Aryee AA; Yang P; Han R; Qu L Int J Biol Macromol; 2024 Jun; 271(Pt 1):132637. PubMed ID: 38795565 [TBL] [Abstract][Full Text] [Related]
37. Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. Sutirman ZA; Sanagi MM; Abd Karim KJ; Wan Ibrahim WA; Jume BH Int J Biol Macromol; 2018 Sep; 116():255-263. PubMed ID: 29746971 [TBL] [Abstract][Full Text] [Related]
38. Comprehensive insight into adsorption of chlortetracycline hydrochloride by room-temperature synthesized water-stable Zr-based metal-organic gel/sodium alginate beads. Wang Y; Gao Y; Gu J; Liu Z; Li N; Liu Z; Li Y Environ Res; 2023 Sep; 232():116339. PubMed ID: 37290628 [TBL] [Abstract][Full Text] [Related]
39. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu (II) and U (VI) removal. Yi X; Sun F; Han Z; Han F; He J; Ou M; Gu J; Xu X Ecotoxicol Environ Saf; 2018 Aug; 158():309-318. PubMed ID: 29729598 [TBL] [Abstract][Full Text] [Related]
40. Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study. Lencina MS; Piqueras CM; Vega DA; Villar MA; Del Barrio MC J Environ Sci Health A Tox Hazard Subst Environ Eng; 2023; 58(4):369-381. PubMed ID: 36946333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]