BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38599424)

  • 1. Green, chemical-free, and high-yielding extraction of nanocellulose from waste cotton fabric enabled by electron beam irradiation.
    Wu Q; Ding C; Wang B; Rong L; Mao Z; Feng X
    Int J Biol Macromol; 2024 May; 267(Pt 2):131461. PubMed ID: 38599424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid.
    Hou W; Ling C; Shi S; Yan Z
    Int J Biol Macromol; 2019 Feb; 123():363-368. PubMed ID: 30445076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of Nanocellulose from Polyester-Cotton Textile Waste for Modification of Film Composites.
    Srichola P; Witthayolankowit K; Sukyai P; Sampoompuang C; Lobyam K; Kampakun P; Toomtong R
    Polymers (Basel); 2023 Aug; 15(15):. PubMed ID: 37571218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melt-processed poly(vinyl alcohol) composites filled with microcrystalline cellulose from waste cotton fabrics.
    Sun X; Lu C; Liu Y; Zhang W; Zhang X
    Carbohydr Polym; 2014 Jan; 101():642-9. PubMed ID: 24299821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.
    Chen YW; Lee HV
    Int J Biol Macromol; 2018 Feb; 107(Pt A):78-92. PubMed ID: 28860064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method.
    Shi S; Zhang M; Ling C; Hou W; Yan Z
    Waste Manag; 2018 Dec; 82():139-146. PubMed ID: 30509575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications.
    Ji C; Wang Y
    Adv Colloid Interface Sci; 2023 Aug; 318():102970. PubMed ID: 37523998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of cotton fiber-based nanocellulose.
    Theivasanthi T; Anne Christma FL; Toyin AJ; Gopinath SCB; Ravichandran R
    Int J Biol Macromol; 2018 Apr; 109():832-836. PubMed ID: 29133091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of lignin-containing nanocellulose fibrils from date palm waste using a green solvent.
    Raza M; Jawaid M; Abu-Jdayil B
    Int J Biol Macromol; 2024 May; 267(Pt 1):131540. PubMed ID: 38608992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and Characterization of Functional Biobased Membranes from Postconsumer Cotton Fabrics and Palm Waste for the Removal of Dyes.
    Khan MJ; Karim Z; Charnnok B; Poonsawat T; Posoknistakul P; Laosiripojana N; Wu KC; Sakdaronnarong C
    Int J Mol Sci; 2023 Mar; 24(7):. PubMed ID: 37047002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis.
    Sanchis-Sebastiá M; Ruuth E; Stigsson L; Galbe M; Wallberg O
    Waste Manag; 2021 Feb; 121():248-254. PubMed ID: 33388647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-soluble cellulose acetate from waste cotton fabrics and the aqueous processing of all-cellulose composites.
    Cao J; Sun X; Lu C; Zhou Z; Zhang X; Yuan G
    Carbohydr Polym; 2016 Sep; 149():60-7. PubMed ID: 27261730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of nanocellulose with different length from ginkgo seed shells and applications for oil in water Pickering emulsions.
    Ni Y; Li J; Fan L
    Int J Biol Macromol; 2020 Apr; 149():617-626. PubMed ID: 32001288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium.
    Satyamurthy P; Vigneshwaran N
    Enzyme Microb Technol; 2013 Jan; 52(1):20-5. PubMed ID: 23199734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocellulose from recycled indigo-dyed denim fabric and its application in composite films.
    Zhong T; Dhandapani R; Liang D; Wang J; Wolcott MP; Van Fossen D; Liu H
    Carbohydr Polym; 2020 Jul; 240():116283. PubMed ID: 32475567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction and characterization of nanocellulose structures from raw cotton linter.
    Morais JP; Rosa Mde F; de Souza Filho Mde S; Nascimento LD; do Nascimento DM; Cassales AR
    Carbohydr Polym; 2013 Jan; 91(1):229-35. PubMed ID: 23044127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of viscose yarn waste through one-step extraction of nanocellulose.
    Prado KS; Gonzales D; Spinacé MAS
    Int J Biol Macromol; 2019 Sep; 136():729-737. PubMed ID: 31226379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study on nanocellulose isolated from waste chilli stems processing as dietary fiber in biscuits.
    Ma Y; Chai X; Bao H; Huang Y; Dong W
    PLoS One; 2023; 18(1):e0281142. PubMed ID: 36706130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.