BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38599683)

  • 1. Metabolic sensing in AgRP regulates sucrose preference and dopamine release in the nucleus accumbens.
    Reichenbach A; Dempsey H; Andrews ZB
    J Neuroendocrinol; 2024 May; 36(5):e13389. PubMed ID: 38599683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum.
    Reichenbach A; Clarke RE; Stark R; Lockie SH; Mequinion M; Dempsey H; Rawlinson S; Reed F; Sepehrizadeh T; DeVeer M; Munder AC; Nunez-Iglesias J; Spanswick DC; Mynatt R; Kravitz AV; Dayas CV; Brown R; Andrews ZB
    Elife; 2022 Jan; 11():. PubMed ID: 35018884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ghrelin signalling in AgRP neurons links metabolic state to the sensory regulation of AgRP neural activity.
    So WL; Hu J; Jeffs L; Dempsey H; Lockie SH; Zigman JM; Stark R; Reichenbach A; Andrews ZB
    Mol Metab; 2023 Dec; 78():101826. PubMed ID: 37898450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.
    Krashes MJ; Shah BP; Madara JC; Olson DP; Strochlic DE; Garfield AS; Vong L; Pei H; Watabe-Uchida M; Uchida N; Liberles SD; Lowell BB
    Nature; 2014 Mar; 507(7491):238-42. PubMed ID: 24487620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothalamic control of interoceptive hunger.
    Siemian JN; Arenivar MA; Sarsfield S; Aponte Y
    Curr Biol; 2021 Sep; 31(17):3797-3809.e5. PubMed ID: 34273280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ghrelin receptor in agouti-related peptide neurones regulates metabolic adaptation to calorie restriction.
    Wu CS; Bongmba OYN; Lee JH; Tuchaai E; Zhou Y; Li DP; Xue B; Chen Z; Sun Y
    J Neuroendocrinol; 2019 Jul; 31(7):e12763. PubMed ID: 31251830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moderate high fat diet increases sucrose self-administration in young rats.
    Figlewicz DP; Jay JL; Acheson MA; Magrisso IJ; West CH; Zavosh A; Benoit SC; Davis JF
    Appetite; 2013 Feb; 61(1):19-29. PubMed ID: 23023044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic effects of intermittent access to caloric or non-caloric sweetened solutions in mice fed a high-caloric diet.
    Soto M; Chaumontet C; Even PC; Azzout-Marniche D; Tomé D; Fromentin G
    Physiol Behav; 2017 Jun; 175():47-55. PubMed ID: 28347724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Food reward in the absence of taste receptor signaling.
    de Araujo IE; Oliveira-Maia AJ; Sotnikova TD; Gainetdinov RR; Caron MG; Nicolelis MA; Simon SA
    Neuron; 2008 Mar; 57(6):930-41. PubMed ID: 18367093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feeding signals inhibit fluid-satiation signals in the mouse lateral parabrachial nucleus to increase intake of highly palatable, caloric solutions.
    Aitken CM; Jaramillo JCM; Davis W; Brennan-Xie L; McDougall SJ; Lawrence AJ; Ryan PJ
    J Neurochem; 2023 Dec; 167(5):648-667. PubMed ID: 37855271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient selection in the absence of taste receptor signaling.
    Ren X; Ferreira JG; Zhou L; Shammah-Lagnado SJ; Yeckel CW; de Araujo IE
    J Neurosci; 2010 Jun; 30(23):8012-23. PubMed ID: 20534849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preference for a high fat diet, but not hyperphagia following activation of mu opioid receptors is blocked in AgRP knockout mice.
    Barnes MJ; Argyropoulos G; Bray GA
    Brain Res; 2010 Mar; 1317():100-7. PubMed ID: 20051234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic G
    Ewbank SN; Campos CA; Chen JY; Bowen AJ; Padilla SL; Dempsey JL; Cui JY; Palmiter RD
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20874-20880. PubMed ID: 32764144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional Basis for Rhythmic Control of Hunger and Metabolism within the AgRP Neuron.
    Cedernaes J; Huang W; Ramsey KM; Waldeck N; Cheng L; Marcheva B; Omura C; Kobayashi Y; Peek CB; Levine DC; Dhir R; Awatramani R; Bradfield CA; Wang XA; Takahashi JS; Mokadem M; Ahima RS; Bass J
    Cell Metab; 2019 May; 29(5):1078-1091.e5. PubMed ID: 30827863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons for hunger and thirst transmit a negative-valence teaching signal.
    Betley JN; Xu S; Cao ZFH; Gong R; Magnus CJ; Yu Y; Sternson SM
    Nature; 2015 May; 521(7551):180-185. PubMed ID: 25915020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits.
    Klima ML; Kruger KA; Goldstein N; Pulido S; Low AYT; Assenmacher CA; Alhadeff AL; Betley JN
    Cell Rep; 2023 Nov; 42(11):113338. PubMed ID: 37910501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basolateral nucleus of the amygdala mediates caloric sugar preference over a non-caloric sweetener in mice.
    Yasoshima Y; Yoshizawa H; Shimura T; Miyamoto T
    Neuroscience; 2015 Apr; 291():203-15. PubMed ID: 25684750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Participation of Agouti related peptide in machanisms of wakefulness-sleep cycle regulation].
    Romanova IV; Mikhrina AL
    Fiziol Cheloveka; 2013; 39(6):24-30. PubMed ID: 25509169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypothalamic neuronal circuits regulating hunger-induced taste modification.
    Fu O; Iwai Y; Narukawa M; Ishikawa AW; Ishii KK; Murata K; Yoshimura Y; Touhara K; Misaka T; Minokoshi Y; Nakajima KI
    Nat Commun; 2019 Oct; 10(1):4560. PubMed ID: 31594935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustained NPY signaling enables AgRP neurons to drive feeding.
    Chen Y; Essner RA; Kosar S; Miller OH; Lin YC; Mesgarzadeh S; Knight ZA
    Elife; 2019 Apr; 8():. PubMed ID: 31033437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.