These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38600027)

  • 1. Atomic force microscopy 3D structural reconstruction of individual particles in the study of amyloid protein assemblies.
    Chitty C; Kuliga K; Xue WF
    Biochem Soc Trans; 2024 Apr; 52(2):761-771. PubMed ID: 38600027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional reconstruction of individual helical nano-filament structures from atomic force microscopy topographs.
    Lutter L; Serpell CJ; Tuite MF; Serpell LC; Xue WF
    Biomol Concepts; 2020 May; 11(1):102-115. PubMed ID: 32374275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Identification of Individual Helical Amyloid Filaments by Integration of Cryo-Electron Microscopy-Derived Maps in Comparative Morphometric Atomic Force Microscopy Image Analysis.
    Lutter L; Al-Hilaly YK; Serpell CJ; Tuite MF; Wischik CM; Serpell LC; Xue WF
    J Mol Biol; 2022 Apr; 434(7):167466. PubMed ID: 35077765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic force microscopy as an imaging tool to study the bio/nonbio complexes.
    Bednarikova Z; Gazova Z; Valle F; Bystrenova E
    J Microsc; 2020 Dec; 280(3):241-251. PubMed ID: 32519330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring biomolecular interactions by time-lapse atomic force microscopy.
    Stolz M; Stoffler D; Aebi U; Goldsbury C
    J Struct Biol; 2000 Sep; 131(3):171-80. PubMed ID: 11052889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Structural Diversity and Individuality of Polymorphic Amyloid Protein Assemblies.
    Lutter L; Aubrey LD; Xue WF
    J Mol Biol; 2021 Oct; 433(20):167124. PubMed ID: 34224749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-lapse atomic force microscopy in the characterization of amyloid-like fibril assembly and oligomeric intermediates.
    Goldsbury C; Green J
    Methods Mol Biol; 2005; 299():103-28. PubMed ID: 15980598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic force fluorescence microscopy in the characterization of amyloid fibril assembly and oligomeric intermediates.
    Ostapchenko V; Gasset M; Baskakov IV
    Methods Mol Biol; 2012; 849():157-67. PubMed ID: 22528089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Structural Organization of Insulin Fibril Polymorphs Revealed by Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR).
    Rizevsky S; Kurouski D
    Chembiochem; 2020 Feb; 21(4):481-485. PubMed ID: 31299124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of low-resolution molecular structures from simulated atomic force microscopy images.
    Dasgupta B; Miyashita O; Tama F
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129420. PubMed ID: 31472175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicking and fragmentation are responsible for α-lactalbumin amyloid fibril formation at acidic pH and elevated temperature.
    Rahamtullah ; Mishra R
    Protein Sci; 2021 Sep; 30(9):1919-1934. PubMed ID: 34107116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acquisition and processing of high-speed atomic force microscopy videos for single amyloid aggregate observation.
    Watanabe-Nakayama T; Ono K
    Methods; 2022 Jan; 197():4-12. PubMed ID: 34107352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Speed Atomic Force Microscopy of Individual Amyloidogenic Protein Assemblies.
    Watanabe-Nakayama T; Ono K
    Methods Mol Biol; 2018; 1814():201-212. PubMed ID: 29956234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates.
    Watanabe-Nakayama T; Ono K; Itami M; Takahashi R; Teplow DB; Yamada M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):5835-40. PubMed ID: 27162352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learnings from Protein Folding Projected onto Amyloid Misfolding.
    Sreenivasan S; Narayan M
    ACS Chem Neurosci; 2019 Sep; 10(9):3911-3913. PubMed ID: 31456389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Force Microscopy: An Introduction.
    Feng Y; Roos WH
    Methods Mol Biol; 2024; 2694():295-316. PubMed ID: 37824010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology.
    Visser MJE; Pretorius E
    Curr Top Med Chem; 2019; 19(32):2958-2973. PubMed ID: 31755391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation atomic force microscopy for atomic reconstruction of biomolecular structures from resolution-limited experimental images.
    Amyot R; Marchesi A; Franz CM; Casuso I; Flechsig H
    PLoS Comput Biol; 2022 Mar; 18(3):e1009970. PubMed ID: 35294442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways.
    Watanabe-Nakayama T; Sahoo BR; Ramamoorthy A; Ono K
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Force Microscopy: An Introduction.
    Piontek MC; Roos WH
    Methods Mol Biol; 2018; 1665():243-258. PubMed ID: 28940073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.