These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38600225)
1. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine. Zhu J; Li W; Teng B; Lu Q; Li D; Li L Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225 [TBL] [Abstract][Full Text] [Related]
2. Study of the development patterns of water-conducting fracture zones under karst aquifers and the mechanism of water inrush. Zheng L; Wang X; Lan H; Ren W; Tian Y; Xu J; Tian S Sci Rep; 2024 Sep; 14(1):20790. PubMed ID: 39242957 [TBL] [Abstract][Full Text] [Related]
3. Subsidence prediction of overburden strata and ground surface in shallow coal seam mining. Cao J; Huang Q; Guo L Sci Rep; 2021 Sep; 11(1):18972. PubMed ID: 34556745 [TBL] [Abstract][Full Text] [Related]
4. Research on a Space-Time Continuous Sensing System for Overburden Deformation and Failure during Coal Mining. Cheng G; Wang Z; Shi B; Zhu W; Li T Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447803 [TBL] [Abstract][Full Text] [Related]
5. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar. Ma D; Wang J; Li Z Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004 [TBL] [Abstract][Full Text] [Related]
6. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining. Yang JH; Yu X; Yang Y; Yang ZQ PLoS One; 2018; 13(3):e0192886. PubMed ID: 29513703 [TBL] [Abstract][Full Text] [Related]
7. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining. Li A; Ji B; Ma Q; Ji Y; Mu Q; Zhang W; Mu P; Li L; Zhao C Sci Rep; 2022 Jan; 12(1):875. PubMed ID: 35042919 [TBL] [Abstract][Full Text] [Related]
8. Study of water-conducting fractured zone development law and assessment method in longwall mining of shallow coal seam. Li X; Ji D; Han P; Li Q; Zhao H; He F Sci Rep; 2022 May; 12(1):7994. PubMed ID: 35568720 [TBL] [Abstract][Full Text] [Related]
9. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam. Long T; Hou E; Xie X; Fan Z; Tan E Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594 [TBL] [Abstract][Full Text] [Related]
10. Simulation and On-Site Detection of the Failure Characteristics of Overlying Strata under the Mining Disturbance of Coal Seams with Thin Bedrock and Thick Alluvium. Zhang Q; Guo J; Lu X; Ding K; Yuan R; Wang D Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544011 [TBL] [Abstract][Full Text] [Related]
11. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin. Shi L; Qu X; Qiu M; Han J; Zhang W PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875 [TBL] [Abstract][Full Text] [Related]
12. Research on prediction method of coal mining surface subsidence based on MMF optimization model. Piao C; Zhu B; Jiang J; Dong Q Sci Rep; 2024 Sep; 14(1):20316. PubMed ID: 39223282 [TBL] [Abstract][Full Text] [Related]
13. Research on Spatiotemporal Continuous Information Perception of Overburden Compression-Tensile Strain Transition Zone during Mining and Integrated Safety Guarantee System. Cheng G; Wang Z; Shi B; Cai T; Liang M; Wu J; You Q Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275767 [TBL] [Abstract][Full Text] [Related]
14. Macroscopic fracture mechanism of coal body and evolution characteristics analysis of impact force in deep coal and gas outburst. Ren L; Tang J; Pan Y; Zhang X; Yu H Sci Rep; 2023 Sep; 13(1):15944. PubMed ID: 37743394 [TBL] [Abstract][Full Text] [Related]
15. Study of the mining and aquifer interactions in complex geological conditions and its management. Huang W; Sui L; Wang Y; Zhang C; Jiang D; Cai X; Yang Z Sci Rep; 2023 Jun; 13(1):9462. PubMed ID: 37301932 [TBL] [Abstract][Full Text] [Related]
16. Gray Evaluation of Water Inrush Risk in Deep Mining Floor. Qu X; Yu X; Qu X; Qiu M; Gao W ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422 [TBL] [Abstract][Full Text] [Related]
17. Evolution mechanism of water-conducting fractures in overburden under the influence of water-rich fault in underground coal mining. Zhengzheng C; Xiangqian Y; Zhenhua L; Feng D Sci Rep; 2024 Mar; 14(1):5081. PubMed ID: 38429309 [TBL] [Abstract][Full Text] [Related]
18. Process of overburden failure in steeply inclined multi-seam mining: insights from physical modelling. Wang H; Qin Y; Wang H; Chen Y; Liu X R Soc Open Sci; 2021 May; 8(5):210275. PubMed ID: 34017603 [TBL] [Abstract][Full Text] [Related]
19. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine. Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037 [TBL] [Abstract][Full Text] [Related]
20. Elastic wave prospecting of water-conducting fractured zones in coal mining. Zhao B; He S; Bai K; Lu X; Wang W Sci Rep; 2024 Mar; 14(1):7036. PubMed ID: 38528085 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]