These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38600404)

  • 41. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber.
    Jang WD; Kim TY; Kim HU; Shim WY; Ryu JY; Park JH; Lee SY
    Biotechnol Bioeng; 2019 Dec; 116(12):3372-3381. PubMed ID: 31433066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The biosynthesis of amidated bacterial cellulose derivatives via in-situ strategy.
    Lin J; Sun B; Zhang H; Yang X; Qu X; Zhang L; Chen C; Sun D
    Int J Biol Macromol; 2023 Jul; 242(Pt 3):124831. PubMed ID: 37245762
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture.
    Gomes RJ; Ida EI; Spinosa WA
    Braz J Microbiol; 2023 Jun; 54(2):703-713. PubMed ID: 36800074
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Naloka K; Yukphan P; Matsutani M; Matsushita K; Theeragool G
    Int J Syst Evol Microbiol; 2020 Jan; 70(1):251-258. PubMed ID: 31622229
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains.
    Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B
    Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of bacterial cellulose by
    Kolesovs S; Ruklisha M; Semjonovs P
    3 Biotech; 2023 Mar; 13(3):105. PubMed ID: 36875957
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phylogenomic and comparative analyses support the reclassification of several
    Brandão PR; Crespo MTB; Nascimento FX
    Int J Syst Evol Microbiol; 2022 Feb; 72(2):. PubMed ID: 35175916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Roles of the Various Cellulose Biosynthesis Operons in
    Bimmer M; Mientus M; Klingl A; Ehrenreich A; Liebl W
    Appl Environ Microbiol; 2022 Apr; 88(7):e0246021. PubMed ID: 35319232
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by
    Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H
    J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Progress in bacterial cellulose matrices for biotechnological applications.
    Cacicedo ML; Castro MC; Servetas I; Bosnea L; Boura K; Tsafrakidou P; Dima A; Terpou A; Koutinas A; Castro GR
    Bioresour Technol; 2016 Aug; 213():172-180. PubMed ID: 26927233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutritional Supplementation with Amino Acids on Bacterial Cellulose Production by Komagataeibacter intermedius: Effect Analysis and Application of Response Surface Methodology.
    Gomes RJ; Ida EI; Spinosa WA
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5017-5036. PubMed ID: 35687307
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the Putative Acylated Cellulose Synthase Operon in
    Szymczak I; Pietrzyk-Brzezińska AJ; Duszyński K; Ryngajłło M
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A natural in situ fabrication method of functional bacterial cellulose using a microorganism.
    Gao M; Li J; Bao Z; Hu M; Nian R; Feng D; An D; Li X; Xian M; Zhang H
    Nat Commun; 2019 Jan; 10(1):437. PubMed ID: 30683871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media.
    Jozala AF; Pértile RA; dos Santos CA; de Carvalho Santos-Ebinuma V; Seckler MM; Gama FM; Pessoa A
    Appl Microbiol Biotechnol; 2015 Feb; 99(3):1181-90. PubMed ID: 25472434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative Genome Analysis of Three
    Ishiya K; Kosaka H; Inaoka T; Kimura K; Nakashima N
    Front Microbiol; 2021; 12():798010. PubMed ID: 35185823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced Production of Bacterial Cellulose in
    Hur DH; Choi WS; Kim TY; Lee SY; Park JH; Jeong KJ
    J Microbiol Biotechnol; 2020 Sep; 30(9):1430-1435. PubMed ID: 32627756
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of Bacterial Cellulose Produced by
    Thongwai N; Futui W; Ladpala N; Sirichai B; Weechan A; Kanklai J; Rungsirivanich P
    Microorganisms; 2022 Feb; 10(3):. PubMed ID: 35336103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in
    Wang SS; Han YH; Chen JL; Zhang DC; Shi XX; Ye YX; Chen DL; Li M
    Polymers (Basel); 2018 Aug; 10(9):. PubMed ID: 30960888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.