These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 38600665)

  • 1. scINRB: single-cell gene expression imputation with network regularization and bulk RNA-seq data.
    Kang Y; Zhang H; Guan J
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38600665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data.
    Chen S; Yan X; Zheng R; Li M
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36567258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. netNMF-sc: leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.
    Elyanow R; Dumitrascu B; Engelhardt BE; Raphael BJ
    Genome Res; 2020 Feb; 30(2):195-204. PubMed ID: 31992614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CL-Impute: A contrastive learning-based imputation for dropout single-cell RNA-seq data.
    Shi Y; Wan J; Zhang X; Yin Y
    Comput Biol Med; 2023 Sep; 164():107263. PubMed ID: 37531858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic evaluation of single-cell RNA-sequencing imputation methods.
    Hou W; Ji Z; Ji H; Hicks SC
    Genome Biol; 2020 Aug; 21(1):218. PubMed ID: 32854757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares.
    Gong L; Cui X; Liu Y; Lin C; Gao Z
    Comput Biol Med; 2024 Mar; 171():108225. PubMed ID: 38442556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scRNMF: An imputation method for single-cell RNA-seq data by robust and non-negative matrix factorization.
    Qian Y; Zou Q; Zhao M; Liu Y; Guo F; Ding Y
    PLoS Comput Biol; 2024 Aug; 20(8):e1012339. PubMed ID: 39116191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ccImpute: an accurate and scalable consensus clustering based algorithm to impute dropout events in the single-cell RNA-seq data.
    Malec M; Kurban H; Dalkilic M
    BMC Bioinformatics; 2022 Jul; 23(1):291. PubMed ID: 35869420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.
    Qiu Y; Yan C; Zhao P; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37122068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CDSImpute: An ensemble similarity imputation method for single-cell RNA sequence dropouts.
    Azim R; Wang S; Dipu SA
    Comput Biol Med; 2022 Jul; 146():105658. PubMed ID: 35751187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate and interpretable gene expression imputation on scRNA-seq data using IGSimpute.
    Xu K; Cheong C; Veldsman WP; Lyu A; Cheung WK; Zhang L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37039664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A posterior probability based Bayesian method for single-cell RNA-seq data imputation.
    Chen S; Zheng R; Tian L; Wu FX; Li M
    Methods; 2023 Aug; 216():21-38. PubMed ID: 37315825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scCAN: Clustering With Adaptive Neighbor-Based Imputation Method for Single-Cell RNA-Seq Data.
    Dong S; Liu Y; Gong Y; Dong X; Zeng X
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):95-105. PubMed ID: 38285569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep matrix factorization based approach for single-cell RNA-seq data clustering.
    Liang Z; Zheng R; Chen S; Yan X; Li M
    Methods; 2022 Sep; 205():114-122. PubMed ID: 35777719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvements Achieved by Multiple Imputation for Single-Cell RNA-Seq Data in Clustering Analysis and Differential Expression Analysis.
    Zhu M; Lai Y
    J Comput Biol; 2022 Jul; 29(7):634-649. PubMed ID: 35575729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating imputation methods for single-cell RNA-seq data.
    Cheng Y; Ma X; Yuan L; Sun Z; Wang P
    BMC Bioinformatics; 2023 Jul; 24(1):302. PubMed ID: 37507764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propensity score matching enables batch-effect-corrected imputation in single-cell RNA-seq analysis.
    Xu X; Yu X; Hu G; Wang K; Zhang J; Li X
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35821114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.