BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38600718)

  • 1. Construction and validation of key genes-related prognosis model in children with acute myeloid leukaemia.
    Huang F; Ming C; Jiang Y; Li C; Tan C
    Int J Lab Hematol; 2024 Apr; ():. PubMed ID: 38600718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DesA Prognostic Risk Model of LncRNAs in Patients With Acute Myeloid Leukaemia Based on TCGA Data.
    Ding W; Ling Y; Shi Y; Zheng Z
    Front Bioeng Biotechnol; 2022; 10():818905. PubMed ID: 35265597
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification and Validation of a Prognostic Risk-Scoring Model Based on Ferroptosis-Associated Cluster in Acute Myeloid Leukemia.
    Wang J; Zhuo Z; Wang Y; Yang S; Chen J; Wang Y; Geng S; Li M; Du X; Lai P; Weng J
    Front Cell Dev Biol; 2021; 9():800267. PubMed ID: 35127715
    [No Abstract]   [Full Text] [Related]  

  • 4. SLC25A1-associated prognostic signature predicts poor survival in acute myeloid leukemia patients.
    Liu F; Deng S; Li Y; Du J; Zeng H
    Front Genet; 2022; 13():1081262. PubMed ID: 36685828
    [No Abstract]   [Full Text] [Related]  

  • 5. A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for acute myeloid leukemia.
    Li P; Li J; Wen F; Cao Y; Luo Z; Zuo J; Wu F; Li Z; Li W; Wang F
    Front Oncol; 2022; 12():966920. PubMed ID: 36276132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. m6A genotypes and prognostic signature for assessing the prognosis of patients with acute myeloid leukemia.
    Fu C; Kou R; Meng J; Jiang D; Zhong R; Dong M
    BMC Med Genomics; 2023 Aug; 16(1):191. PubMed ID: 37596597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and validation of a siglec-based and aging-related 9-gene signature for predicting prognosis in acute myeloid leukemia patients.
    Shi H; Gao L; Zhang W; Jiang M
    BMC Bioinformatics; 2022 Jul; 23(1):284. PubMed ID: 35854240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prognostic value of an eighteen-genes panel in acute myeloid leukemia by analyzing TARGET and TCGA databases.
    Chen P; Cao J; Chen L; Gao G; Xu Y; Jia P; Li Y; Li Y; Du J; Zhang S; Zhang J
    Cancer Biomark; 2023; 36(4):287-298. PubMed ID: 36938728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a 10-gene prognostic signature for acute myeloid leukaemia.
    Yang Z; Shang J; Li N; Zhang L; Tang T; Tian G; Chen X
    J Cell Mol Med; 2020 Apr; 24(8):4510-4523. PubMed ID: 32150667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of a prognostic ferroptosis-related gene profile in acute myeloid leukaemia.
    Shao R; Wang H; Liu W; Wang J; Lu S; Tang H; Lu Y
    J Cell Mol Med; 2021 Dec; 25(23):10950-10960. PubMed ID: 34741393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A six-gene-based prognostic model predicts complete remission and overall survival in childhood acute myeloid leukemia.
    Zhang N; Chen Y; Lou S; Shen Y; Deng J
    Onco Targets Ther; 2019; 12():6591-6604. PubMed ID: 31496748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A three-gene signature and clinical outcome in pediatric acute myeloid leukemia.
    Cai Z; Wu Y; Zhang F; Wu H
    Clin Transl Oncol; 2021 Apr; 23(4):866-873. PubMed ID: 32862280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Analysis of Autophagy-Related Signature Uncovers Prognostic Predictor for Acute Myeloid Leukemia.
    Chen XX; Li ZP; Zhu JH; Xia HT; Zhou H
    DNA Cell Biol; 2020 Sep; 39(9):1595-1605. PubMed ID: 32783661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transient receptor potential channel-related model based on machine learning for evaluating tumor microenvironment and immunotherapeutic strategies in acute myeloid leukemia.
    Hua J; Ding T; Shao Y
    Front Immunol; 2022; 13():1040661. PubMed ID: 36591215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of a novel mRNA-signature prediction model for prognosis of bladder cancer based on a statistical analysis.
    Li J; Cao J; Li P; Yao Z; Deng R; Ying L; Tian J
    BMC Cancer; 2021 Jul; 21(1):858. PubMed ID: 34315402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of distinct gene expression profile patterns that can improve the classification of intermediate-risk prognosis in AML patients.
    Eshibona N; Livesey M; Christoffels A; Bendou H
    Front Genet; 2023; 14():1131159. PubMed ID: 36865386
    [No Abstract]   [Full Text] [Related]  

  • 17. Genome-wide identification of FHL1 as a powerful prognostic candidate and potential therapeutic target in acute myeloid leukaemia.
    Fu Y; Xu M; Cui Z; Yang Z; Zhang Z; Yin X; Huang X; Zhou M; Wang X; Chen C
    EBioMedicine; 2020 Feb; 52():102664. PubMed ID: 32062360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a Prognostic Immune-Related LncRNA Risk Model for Lung Adenocarcinoma.
    Li Y; Shen R; Wang A; Zhao J; Zhou J; Zhang W; Zhang R; Zhu J; Liu Z; Huang JA
    Front Cell Dev Biol; 2021; 9():648806. PubMed ID: 33869203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction and Validation of Prognostic Risk Score Model of Autophagy Related Genes in Lung Adenocarcinoma].
    Zhou J; Wang X; Li Z; Jiang R
    Zhongguo Fei Ai Za Zhi; 2021 Aug; 24(8):557-566. PubMed ID: 34256900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hypoxia-related genes prognostic risk model, and mechanisms of hypoxia contributing to poor prognosis through immune microenvironment and drug resistance in acute myeloid leukemia.
    Liu X; Wang L; Kang Q; Feng C; Wang J
    Front Pharmacol; 2024; 15():1339465. PubMed ID: 38482057
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.