BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 38600964)

  • 21. Wnt Signaling in Skeletal Muscle Development and Regeneration.
    Girardi F; Le Grand F
    Prog Mol Biol Transl Sci; 2018 Jan; 153():157-179. PubMed ID: 29389515
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neuromuscular Junction Formation, Aging, and Disorders.
    Li L; Xiong WC; Mei L
    Annu Rev Physiol; 2018 Feb; 80():159-188. PubMed ID: 29195055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor.
    Kokabu S; Nakatomi C; Matsubara T; Ono Y; Addison WN; Lowery JW; Urata M; Hudnall AM; Hitomi S; Nakatomi M; Sato T; Osawa K; Yoda T; Rosen V; Jimi E
    J Biol Chem; 2017 Aug; 292(31):12885-12894. PubMed ID: 28607151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Muscle Yap Is a Regulator of Neuromuscular Junction Formation and Regeneration.
    Zhao K; Shen C; Lu Y; Huang Z; Li L; Rand CD; Pan J; Sun XD; Tan Z; Wang H; Xing G; Cao Y; Hu G; Zhou J; Xiong WC; Mei L
    J Neurosci; 2017 Mar; 37(13):3465-3477. PubMed ID: 28213440
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wnt/β-catenin signaling via Axin2 is required for myogenesis and, together with YAP/Taz and Tead1, active in IIa/IIx muscle fibers.
    Huraskin D; Eiber N; Reichel M; Zidek LM; Kravic B; Bernkopf D; von Maltzahn J; Behrens J; Hashemolhosseini S
    Development; 2016 Sep; 143(17):3128-42. PubMed ID: 27578179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diverging roles for Lrp4 and Wnt signaling in neuromuscular synapse development during evolution.
    Remédio L; Gribble KD; Lee JK; Kim N; Hallock PT; Delestrée N; Mentis GZ; Froemke RC; Granato M; Burden SJ
    Genes Dev; 2016 May; 30(9):1058-69. PubMed ID: 27151977
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation.
    Wu H; Barik A; Lu Y; Shen C; Bowman A; Li L; Sathyamurthy A; Lin TW; Xiong WC; Mei L
    Elife; 2015 Jul; 4():. PubMed ID: 26159615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid Decoding of Sequence-Specific Nuclease-Induced Heterozygous and Biallelic Mutations by Direct Sequencing of PCR Products.
    Ma X; Chen L; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2015 Aug; 8(8):1285-7. PubMed ID: 25747846
    [No Abstract]   [Full Text] [Related]  

  • 29. A Wnt-TGFβ2 axis induces a fibrogenic program in muscle stem cells from dystrophic mice.
    Biressi S; Miyabara EH; Gopinath SD; Carlig PM; Rando TA
    Sci Transl Med; 2014 Dec; 6(267):267ra176. PubMed ID: 25520397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response.
    Azzolin L; Panciera T; Soligo S; Enzo E; Bicciato S; Dupont S; Bresolin S; Frasson C; Basso G; Guzzardo V; Fassina A; Cordenonsi M; Piccolo S
    Cell; 2014 Jul; 158(1):157-70. PubMed ID: 24976009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. E-CRISP: fast CRISPR target site identification.
    Heigwer F; Kerr G; Boutros M
    Nat Methods; 2014 Feb; 11(2):122-3. PubMed ID: 24481216
    [No Abstract]   [Full Text] [Related]  

  • 32. The Groucho protein Grg4 suppresses Smad7 to activate BMP signaling.
    Zhang P; Dressler GR
    Biochem Biophys Res Commun; 2013 Oct; 440(3):454-9. PubMed ID: 24099773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis.
    Cisternas P; Henriquez JP; Brandan E; Inestrosa NC
    Mol Neurobiol; 2014 Feb; 49(1):574-89. PubMed ID: 24014138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Canonical Wnt signaling induces BMP-4 to specify slow myofibrogenesis of fetal myoblasts.
    Kuroda K; Kuang S; Taketo MM; Rudnicki MA
    Skelet Muscle; 2013 Mar; 3(1):5. PubMed ID: 23497616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiplex genome engineering using CRISPR/Cas systems.
    Cong L; Ran FA; Cox D; Lin S; Barretto R; Habib N; Hsu PD; Wu X; Jiang W; Marraffini LA; Zhang F
    Science; 2013 Feb; 339(6121):819-23. PubMed ID: 23287718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of TAZ as mediator of Wnt signaling.
    Azzolin L; Zanconato F; Bresolin S; Forcato M; Basso G; Bicciato S; Cordenonsi M; Piccolo S
    Cell; 2012 Dec; 151(7):1443-56. PubMed ID: 23245942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TCF/LEFs and Wnt signaling in the nucleus.
    Cadigan KM; Waterman ML
    Cold Spring Harb Perspect Biol; 2012 Nov; 4(11):. PubMed ID: 23024173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fiji: an open-source platform for biological-image analysis.
    Schindelin J; Arganda-Carreras I; Frise E; Kaynig V; Longair M; Pietzsch T; Preibisch S; Rueden C; Saalfeld S; Schmid B; Tinevez JY; White DJ; Hartenstein V; Eliceiri K; Tomancak P; Cardona A
    Nat Methods; 2012 Jun; 9(7):676-82. PubMed ID: 22743772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. β-Catenin gain of function in muscles impairs neuromuscular junction formation.
    Wu H; Lu Y; Barik A; Joseph A; Taketo MM; Xiong WC; Mei L
    Development; 2012 Jul; 139(13):2392-404. PubMed ID: 22627288
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice.
    Liu Y; Sugiura Y; Wu F; Mi W; Taketo MM; Cannon S; Carroll T; Lin W
    Dev Biol; 2012 Jun; 366(2):255-67. PubMed ID: 22537499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.