These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 38601088)

  • 1. Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.
    Shareef B; Xian M; Vakanski A; Wang H
    Med Image Comput Comput Assist Interv; 2023 Oct; 14223():344-353. PubMed ID: 38601088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-task approach based on combined CNN-transformer for efficient segmentation and classification of breast tumors in ultrasound images.
    Tagnamas J; Ramadan H; Yahyaouy A; Tairi H
    Vis Comput Ind Biomed Art; 2024 Jan; 7(1):2. PubMed ID: 38273164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation.
    Zhang C; Wang L; Wei G; Kong Z; Qiu M
    Front Physiol; 2024; 15():1432987. PubMed ID: 39397853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images.
    Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A
    Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual encoder network with transformer-CNN for multi-organ segmentation.
    Hong Z; Chen M; Hu W; Yan S; Qu A; Chen L; Chen J
    Med Biol Eng Comput; 2023 Mar; 61(3):661-671. PubMed ID: 36580181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
    Qu X; Lu H; Tang W; Wang S; Zheng D; Hou Y; Jiang J
    Med Phys; 2022 Sep; 49(9):5787-5798. PubMed ID: 35866492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved deep learning image classification algorithm based on Swin Transformer V2.
    Wei J; Chen J; Wang Y; Luo H; Li W
    PeerJ Comput Sci; 2023; 9():e1665. PubMed ID: 38077595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Swin-GA-RF: genetic algorithm-based Swin Transformer and random forest for enhancing cervical cancer classification.
    Alohali MA; El-Rashidy N; Alaklabi S; Elmannai H; Alharbi S; Saleh H
    Front Oncol; 2024; 14():1392301. PubMed ID: 39099689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation.
    He Q; Yang Q; Xie M
    Comput Biol Med; 2023 Mar; 155():106629. PubMed ID: 36787669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution.
    Cai Y; Long Y; Han Z; Liu M; Zheng Y; Yang W; Chen L
    BMC Med Inform Decis Mak; 2023 Feb; 23(1):33. PubMed ID: 36788560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LumVertCancNet: A novel 3D lumbar vertebral body cancellous bone location and segmentation method based on hybrid Swin-transformer.
    Zhang Y; Shi Z; Wang H; Cui S; Zhang L; Liu J; Shan X; Liu Y; Fang L
    Comput Biol Med; 2024 Mar; 171():108237. PubMed ID: 38422966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Land Cover Classification of UAV Remote Sensing Based on Transformer-CNN Hybrid Architecture.
    Lu T; Wan L; Qi S; Gao M
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iU-Net: a hybrid structured network with a novel feature fusion approach for medical image segmentation.
    Jiang Y; Dong J; Cheng T; Zhang Y; Lin X; Liang J
    BioData Min; 2023 Feb; 16(1):5. PubMed ID: 36805687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IC Packaging Material Identification via a Hybrid Deep Learning Framework with CNN-Transformer Bidirectional Interaction.
    Zhang C; Zhou X; Cai N; Zhou S; Wang H
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CoTrFuse: a novel framework by fusing CNN and transformer for medical image segmentation.
    Chen Y; Wang T; Tang H; Zhao L; Zhang X; Tan T; Gao Q; Du M; Tong T
    Phys Med Biol; 2023 Aug; 68(17):. PubMed ID: 37605997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient agricultural pest classification using vision transformer with hybrid pooled multihead attention.
    Saranya T; Deisy C; Sridevi S
    Comput Biol Med; 2024 Jul; 177():108584. PubMed ID: 38788371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swin-Net: A Swin-Transformer-Based Network Combing with Multi-Scale Features for Segmentation of Breast Tumor Ultrasound Images.
    Zhu C; Chai X; Xiao Y; Liu X; Zhang R; Yang Z; Wang Z
    Diagnostics (Basel); 2024 Jan; 14(3):. PubMed ID: 38337784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPFTransformer: transformer fusion context pyramid medical image segmentation network.
    Li J; Ye J; Zhang R; Wu Y; Berhane GS; Deng H; Shi H
    Front Neurosci; 2023; 17():1288366. PubMed ID: 38130692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.