These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3860142)

  • 1. Alterations in membrane protein and phosphorylation pattern in beta-thalassemic red blood cells.
    Erusalimsky J; Shinar E; Rachmilewitz EA; Milner Y
    Ann N Y Acad Sci; 1985; 445():81-91. PubMed ID: 3860142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in structure, function, and Ca++ content of thalassemic red blood cells.
    Rachmilewitz EA; Shinar E; Shalev O; Milner Y; Erusalimsky J; Schrier SL
    Biomed Biochim Acta; 1983; 42(11-12):S27-31. PubMed ID: 6144309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythrocyte membrane skeleton abnormalities in severe beta-thalassemia.
    Shinar E; Shalev O; Rachmilewitz EA; Schrier SL
    Blood; 1987 Jul; 70(1):158-64. PubMed ID: 3593963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The instability of the membrane skeleton in thalassemic red blood cells.
    Yuan J; Bunyaratvej A; Fucharoen S; Fung C; Shinar E; Schrier SL
    Blood; 1995 Nov; 86(10):3945-50. PubMed ID: 7579365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia.
    Shinar E; Rachmilewitz EA; Lux SE
    J Clin Invest; 1989 Feb; 83(2):404-10. PubMed ID: 2521488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and comparison of the red blood cell membrane damage in severe human alpha- and beta-thalassemia.
    Advani R; Sorenson S; Shinar E; Lande W; Rachmilewitz E; Schrier SL
    Blood; 1992 Feb; 79(4):1058-63. PubMed ID: 1737089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abnormal assembly of membrane proteins in erythroid progenitors of patients with beta-thalassemia major.
    Aljurf M; Ma L; Angelucci E; Lucarelli G; Snyder LM; Kiefer CR; Yuan J; Schrier SL
    Blood; 1996 Mar; 87(5):2049-56. PubMed ID: 8634456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in the pathophysiology of hemolysis of alpha- and beta-thalassemic red blood cells.
    Shinar E; Rachmilewitz EA
    Ann N Y Acad Sci; 1990; 612():118-26. PubMed ID: 2291541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased [32P]-phosphorylation of tryptic peptides of erythrocyte spectrin in Duchenne muscular dystrophy.
    Mabry ME; Roses AD
    Muscle Nerve; 1981; 4(6):489-93. PubMed ID: 7311988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of abnormally [32P]-phosphorylated cyanogen bromide cleavage product of erythrocyte membrane spectrin in Duchenne muscular dystrophy.
    Roses AD; Shile PE; Herbstreith MH; Balakrishnan CV
    Neurology; 1981 Aug; 31(8):1026-30. PubMed ID: 7196515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative red blood cell membrane injury in the pathophysiology of severe mouse beta-thalassemia.
    Advani R; Rubin E; Mohandas N; Schrier SL
    Blood; 1992 Feb; 79(4):1064-7. PubMed ID: 1737090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations.
    Schrier SL; Rachmilewitz E; Mohandas N
    Blood; 1989 Nov; 74(6):2194-202. PubMed ID: 2804358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of hemoglobin chains with the cell membrane as a cause of red cell distortion in thalassemia.
    Kirschner-Zilber I; Setter E; Shaklai N
    Biochem Med Metab Biol; 1987 Aug; 38(1):19-31. PubMed ID: 3663395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactions of the alkylating agent tris(2-chloroethyl)-amine with the erythrocyte membrane. Effects on shape changes of human erythrocytes and ghosts.
    Wildenauer DB; Reuther H; Remien J
    Biochim Biophys Acta; 1980 Dec; 603(1):101-16. PubMed ID: 7448181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-linking of intact erythrocyte membrane with a newly synthesized cleavable bifunctional reagent.
    Sato S; Nakao M
    J Biochem; 1981 Oct; 90(4):1177-85. PubMed ID: 7309714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation and dephosphorylation of spectrin.
    Fairbanks G; Avruch J; Dino JE; Patel VP
    J Supramol Struct; 1978; 9(1):97-112. PubMed ID: 32438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the phosphorylation of human erythrocyte spectrin in the intact red cell and in various cell-free systems.
    Harris HW; Levin N; Lux SE
    J Biol Chem; 1980 Dec; 255(23):11521-5. PubMed ID: 7440555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in red blood cells membrane protein composition during hemodialysis procedure.
    Costa E; Rocha S; Rocha-Pereira P; Castro E; Miranda V; Faria Mdo S; Loureiro A; Quintanilha A; Belo L; Santos-Silva A
    Ren Fail; 2008; 30(10):971-5. PubMed ID: 19016148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte membrane phosphorylation in sickle cell disease.
    Delaunay J; Galand C; Boivin P
    Nouv Rev Fr Hematol (1978); 1982; 24(4):227-30. PubMed ID: 6292828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative denaturation of red blood cells in thalassemia.
    Shinar E; Rachmilewitz EA
    Semin Hematol; 1990 Jan; 27(1):70-82. PubMed ID: 2405497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.