These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 38602256)

  • 1. USP7 inhibitors suppress tumour neoangiogenesis and promote synergy with immune checkpoint inhibitors by downregulating fibroblast VEGF.
    Jurisic A; Sung PJ; Wappett M; Daubriac J; Lobb IT; Kung WW; Crawford N; Page N; Cassidy E; Feutren-Burton S; Rountree JSS; Helm MD; O'Dowd CR; Kennedy RD; Gavory G; Cranston AN; Longley DB; Jacq X; Harrison T
    Clin Transl Med; 2024 Apr; 14(4):e1648. PubMed ID: 38602256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune checkpoint inhibitors as mediators for immunosuppression by cancer-associated fibroblasts: A comprehensive review.
    Eskandari-Malayeri F; Rezaei M
    Front Immunol; 2022; 13():996145. PubMed ID: 36275750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of USP7 enhances CD8
    Sun LL; Zhao LN; Sun J; Yuan HF; Wang YF; Hou CY; Lv P; Zhang HH; Yang G; Zhang NN; Zhang XD; Lu W
    Acta Pharmacol Sin; 2024 Aug; 45(8):1686-1700. PubMed ID: 38589688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-angiogenic Agents in Combination With Immune Checkpoint Inhibitors: A Promising Strategy for Cancer Treatment.
    Song Y; Fu Y; Xie Q; Zhu B; Wang J; Zhang B
    Front Immunol; 2020; 11():1956. PubMed ID: 32983126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer.
    Dai X; Lu L; Deng S; Meng J; Wan C; Huang J; Sun Y; Hu Y; Wu B; Wu G; Lovell JF; Jin H; Yang K
    Theranostics; 2020; 10(20):9332-9347. PubMed ID: 32802195
    [No Abstract]   [Full Text] [Related]  

  • 6. ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers.
    Yu ZZ; Liu YY; Zhu W; Xiao D; Huang W; Lu SS; Yi H; Zeng T; Feng XP; Yuan L; Qiu JY; Wu D; Wen Q; Zhou JH; Zhuang W; Xiao ZQ
    J Immunother Cancer; 2023 Mar; 11(3):. PubMed ID: 37001908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity.
    Lee WS; Yang H; Chon HJ; Kim C
    Exp Mol Med; 2020 Sep; 52(9):1475-1485. PubMed ID: 32913278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities.
    Hack SP; Zhu AX; Wang Y
    Front Immunol; 2020; 11():598877. PubMed ID: 33250900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications.
    Tamura R; Tanaka T; Akasaki Y; Murayama Y; Yoshida K; Sasaki H
    Med Oncol; 2019 Nov; 37(1):2. PubMed ID: 31713115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antiangiogenic antibody BD0801 combined with immune checkpoint inhibitors achieves synergistic antitumor activity and affects the tumor microenvironment.
    Xue L; Gao X; Zhang H; Tang J; Wang Q; Li F; Li X; Yu X; Lu Z; Huang Y; Tang R; Yang W
    BMC Cancer; 2021 Oct; 21(1):1134. PubMed ID: 34686154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting PPAR-gamma counteracts tumour adaptation to immune-checkpoint blockade in hepatocellular carcinoma.
    Xiong Z; Chan SL; Zhou J; Vong JSL; Kwong TT; Zeng X; Wu H; Cao J; Tu Y; Feng Y; Yang W; Wong PP; Si-Tou WW; Liu X; Wang J; Tang W; Liang Z; Lu J; Li KM; Low JT; Chan MW; Leung HHW; Chan AWH; To KF; Yip KY; Lo YMD; Sung JJ; Cheng AS
    Gut; 2023 Sep; 72(9):1758-1773. PubMed ID: 37019619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. USP7 small-molecule inhibitors interfere with ubiquitin binding.
    Kategaya L; Di Lello P; Rougé L; Pastor R; Clark KR; Drummond J; Kleinheinz T; Lin E; Upton JP; Prakash S; Heideker J; McCleland M; Ritorto MS; Alessi DR; Trost M; Bainbridge TW; Kwok MCM; Ma TP; Stiffler Z; Brasher B; Tang Y; Jaishankar P; Hearn BR; Renslo AR; Arkin MR; Cohen F; Yu K; Peale F; Gnad F; Chang MT; Klijn C; Blackwood E; Martin SE; Forrest WF; Ernst JA; Ndubaku C; Wang X; Beresini MH; Tsui V; Schwerdtfeger C; Blake RA; Murray J; Maurer T; Wertz IE
    Nature; 2017 Oct; 550(7677):534-538. PubMed ID: 29045385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normalization of tumor vasculature: A potential strategy to increase the efficiency of immune checkpoint blockades in cancers.
    Shi Y; Li Y; Wu B; Zhong C; Lang Q; Liang Z; Zhang Y; Lv C; Han S; Yu Y; Xu F; Tian Y
    Int Immunopharmacol; 2022 Sep; 110():108968. PubMed ID: 35764018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of ultrasound-based mechanical disruption of tumor with immune checkpoint blockade modifies tumor microenvironment and augments systemic antitumor immunity.
    Abe S; Nagata H; Crosby EJ; Inoue Y; Kaneko K; Liu CX; Yang X; Wang T; Acharya CR; Agarwal P; Snyder J; Gwin W; Morse MA; Zhong P; Lyerly HK; Osada T
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35039461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of naturally occurring pentacyclic triterpenes as novel inhibitors of deubiquitinating protease USP7 with anticancer activity in vitro.
    Jing B; Liu M; Yang L; Cai HY; Chen JB; Li ZX; Kou X; Wu YZ; Qin DJ; Zhou L; Jin J; Lei H; Xu HZ; Wang WW; Wu YL
    Acta Pharmacol Sin; 2018 Mar; 39(3):492-498. PubMed ID: 29168472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment.
    De Francesco EM; Sims AH; Maggiolini M; Sotgia F; Lisanti MP; Clarke RB
    Breast Cancer Res; 2017 Dec; 19(1):129. PubMed ID: 29212519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances on the intervention sites targeting USP7-MDM2-p53 in cancer therapy.
    Harakandi C; Nininahazwe L; Xu H; Liu B; He C; Zheng YC; Zhang H
    Bioorg Chem; 2021 Nov; 116():105273. PubMed ID: 34474304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RCAd-LTH-shPD-L1, a double-gene recombinant oncolytic adenovirus with enhanced antitumor immunity, increases lymphocyte infiltration and reshapes the tumor microenvironment.
    Meng Y; Liu H; Zhu H; Zhang W; Sun D; Han X; Liu Y; Luo G
    J Immunother Cancer; 2024 Jan; 12(1):. PubMed ID: 38212125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TME-NET: an interpretable deep neural network for predicting pan-cancer immune checkpoint inhibitor responses.
    Ding X; Zhang L; Fan M; Li L
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39167797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.