These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38602343)
41. Effect of Macroscopic Surface Heterogeneities on an Advancing Contact Line. Melides SS; Vella D; Ramaioli M Langmuir; 2022 Nov; 38(44):13358-13369. PubMed ID: 36302079 [TBL] [Abstract][Full Text] [Related]
42. Factors controlling the pinning force of liquid droplets on liquid infused surfaces. Sadullah MS; Panter JR; Kusumaatmaja H Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997 [TBL] [Abstract][Full Text] [Related]
43. Line tension and morphology of a sessile droplet on a spherical substrate. Iwamatsu M Phys Rev E; 2016 May; 93(5):052804. PubMed ID: 27300961 [TBL] [Abstract][Full Text] [Related]
44. Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis. Bradshaw J; Billingham J Phys Rev E; 2016 Jan; 93(1):013123. PubMed ID: 26871170 [TBL] [Abstract][Full Text] [Related]
45. Pinning-Depinning Mechanisms of the Contact Line during Evaporation of Microdroplets on Rough Surfaces: A Lattice Boltzmann Simulation. Yuan WZ; Zhang LZ Langmuir; 2018 Jul; 34(26):7906-7915. PubMed ID: 29889540 [TBL] [Abstract][Full Text] [Related]
46. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface. Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569 [TBL] [Abstract][Full Text] [Related]
47. Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis. Hong SJ; Chou TH; Chan SH; Sheng YJ; Tsao HK Langmuir; 2012 Apr; 28(13):5606-13. PubMed ID: 22390774 [TBL] [Abstract][Full Text] [Related]
48. Nanodroplet Depinning from Nanoparticles. Liu Q; Leong FY; Aabdin Z; Anand U; Si Bui Quang T; Mirsaidov U ACS Nano; 2015 Sep; 9(9):9020-6. PubMed ID: 26286165 [TBL] [Abstract][Full Text] [Related]
49. Stick-Jump (SJ) Evaporation of Strongly Pinned Nanoliter Volume Sessile Water Droplets on Quick Drying, Micropatterned Surfaces. Debuisson D; Merlen A; Senez V; Arscott S Langmuir; 2016 Mar; 32(11):2679-86. PubMed ID: 26950673 [TBL] [Abstract][Full Text] [Related]
50. How and When the Cassie-Baxter Droplet Starts to Slide on Textured Surfaces. Kim D; Ryu S Langmuir; 2020 Nov; 36(46):14031-14038. PubMed ID: 33175546 [TBL] [Abstract][Full Text] [Related]
51. On the migration of a droplet on an incline. Dai Q; Khonsari MM; Shen C; Huang W; Wang X J Colloid Interface Sci; 2017 May; 494():8-14. PubMed ID: 28131033 [TBL] [Abstract][Full Text] [Related]
52. Dust removal from a hydrophobic surface by rolling fizzy water droplets. Yilbas BS; Hassan G; Al-Qahtani H; Bahatab S; Sahin AZ; Al-Sharafi A; Abubakar AA RSC Adv; 2020 May; 10(34):19811-19821. PubMed ID: 35520448 [TBL] [Abstract][Full Text] [Related]
53. Line tension and morphology of a droplet and a bubble attached to the inner wall of a spherical cavity. Iwamatsu M J Chem Phys; 2016 Apr; 144(14):144704. PubMed ID: 27083742 [TBL] [Abstract][Full Text] [Related]
54. Numerical Study on Droplet Sliding across Micropillars. Wang Y; Chen S Langmuir; 2015 Apr; 31(16):4673-7. PubMed ID: 25860349 [TBL] [Abstract][Full Text] [Related]
56. The impact of trough geometry on film shape. A theoretical study of droplets containing polymer, for P-OLED display applications. Eales AD; Dartnell N; Goddard S; Routh AF J Colloid Interface Sci; 2015 Nov; 458():53-61. PubMed ID: 26203592 [TBL] [Abstract][Full Text] [Related]
57. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Shigorina E; Kordilla J; Tartakovsky AM Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900 [TBL] [Abstract][Full Text] [Related]
58. Heterogeneous nucleation of a droplet pinned at a chemically inhomogeneous substrate: A simulation study of the two-dimensional Ising case. Trobo ML; Albano EV; Binder K J Chem Phys; 2018 Mar; 148(11):114701. PubMed ID: 29566529 [TBL] [Abstract][Full Text] [Related]
59. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces. Hu Z; Chu F; Lin Y; Wu X Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484 [TBL] [Abstract][Full Text] [Related]
60. Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis. Wang Y; Zhao J; Zhang D; Jian M; Liu H; Zhang X Langmuir; 2019 Jul; 35(30):9970-9978. PubMed ID: 31295001 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]