BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38602388)

  • 1. A historical sequence deletion in a commonly used
    Dierksheide KJ; Li GW
    Microbiology (Reading); 2024 Apr; 170(4):. PubMed ID: 38602388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A historical sequence deletion in a commonly used
    Dierksheide KJ; Li GW
    bioRxiv; 2024 Jan; ():. PubMed ID: 38260694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Fibrinolytic Activity of Bacillus subtilis 168 by Integration of a Fibrinolytic Gene into the Chromosome.
    Jeong SJ; Park JY; Lee JY; Lee KW; Cho KM; Kim GM; Shin JH; Kim JS; Kim JH
    J Microbiol Biotechnol; 2015 Nov; 25(11):1863-70. PubMed ID: 26198120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative bacterial artificial chromosomes for DNA integration into the Bacillus subtilis chromosome.
    Juhas M; Ajioka JW
    J Microbiol Methods; 2016 Jun; 125():1-7. PubMed ID: 27033694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An alternative genome-integrated method for undomesticated Bacillus subtilis and related species.
    Mahipant G; Kato J; Kataoka N; Vangnai AS
    J Gen Appl Microbiol; 2019 May; 65(2):96-105. PubMed ID: 30487367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmids for ectopic integration in Bacillus subtilis.
    Guérout-Fleury AM; Frandsen N; Stragier P
    Gene; 1996 Nov; 180(1-2):57-61. PubMed ID: 8973347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of the amyE-tmrB region on the chromosome in tunicamycin-resistant cells of Bacillus subtilis.
    Hashiguchi K; Tanimoto A; Nomura S; Yamane K; Yoda K; Harada S; Mori M; Furusato T; Takatsuki A; Yamasaki M
    Mol Gen Genet; 1986 Jul; 204(1):36-43. PubMed ID: 3018444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplification and deletion of the amyE+-tmrB+ gene region in a Bacillus subtilis recombinant-phage genome by the tmrA7 mutation.
    Furusato T; Takano J; Yamane K; Hashiguchi K; Tanimoto A; Mori M; Yoda K; Yamasaki M; Tamura G
    J Bacteriol; 1986 Feb; 165(2):549-56. PubMed ID: 3003030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.
    Romero S; Merino E; Bolívar F; Gosset G; Martinez A
    Appl Environ Microbiol; 2007 Aug; 73(16):5190-8. PubMed ID: 17586670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Determination of the minimal length DNA homologous region required for plasmid integration into the Bacillus subtilis chromosome via homologous recombination].
    Khasanov FK; Zhvingila DIu; Zaĭhudlin AA; Prozorov AA; Bashkirov VI
    Genetika; 1992 Jul; 28(7):38-45. PubMed ID: 1427056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Construction of plasmids integrating into the Bacillus subtilis chromosome through homologous recombination and their use as integration vectors].
    Nezametdinova VZ; Poluéktova EU; Prozorov AA
    Genetika; 1987 Mar; 23(3):405-13. PubMed ID: 3106150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter.
    Liu S; Endo K; Ara K; Ozaki K; Ogasawara N
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2562-2570. PubMed ID: 18757790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dissection of mutations in the Bacillus subtilis spore photoproduct lyase gene which affect repair of spore DNA damage caused by UV radiation.
    Fajardo-Cavazos P; Nicholson WL
    J Bacteriol; 1995 Aug; 177(15):4402-9. PubMed ID: 7635825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A xylose-inducible Bacillus subtilis integration vector and its application.
    Kim L; Mogk A; Schumann W
    Gene; 1996 Nov; 181(1-2):71-6. PubMed ID: 8973310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replacement of the Bacillus subtilis subtilisin structural gene with an In vitro-derived deletion mutation.
    Stahl ML; Ferrari E
    J Bacteriol; 1984 May; 158(2):411-8. PubMed ID: 6427178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The induction of auxotrophic mutations for riboflavin by the integration of plasmid pLRS33 into the chromosome of Bacillus subtilis].
    Shevchenko TN; Timashova EO; Gorinchuk GF; Maliuta SS
    Genetika; 1988 Aug; 24(8):1371-4. PubMed ID: 3144477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis.
    Lewis PJ; Marston AL
    Gene; 1999 Feb; 227(1):101-10. PubMed ID: 9931458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for the actin homolog gene mreBH and the bacitracin resistance gene bcrC as targets of the alternative sigma factor SigI of Bacillus subtilis.
    Tseng CL; Shaw GC
    J Bacteriol; 2008 Mar; 190(5):1561-7. PubMed ID: 18156261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A versatile mini-mazF-cassette for marker-free targeted genetic modification in Bacillus subtilis.
    Lin Z; Deng B; Jiao Z; Wu B; Xu X; Yu D; Li W
    J Microbiol Methods; 2013 Nov; 95(2):207-14. PubMed ID: 23911571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.