These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38602505)

  • 1.
    Be Rziņš KR; Czyrski GS; Aljabbari A; Heinz A; Boyd BJ
    Anal Chem; 2024 Apr; 96(16):6408-6416. PubMed ID: 38602505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pseudo-3D Subsurface Imaging of Pharmaceutical Solid Dosage Forms Using Micro-spatially Offset Low-Frequency Raman Spectroscopy.
    Be Rziņš KR; Fraser-Miller SJ; Gordon KC
    Anal Chem; 2021 Jun; 93(25):8986-8993. PubMed ID: 34142802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a Fiber-Optics Microspatially Offset Raman Spectroscopy Sensor for Probing Layered Materials.
    Vandenabeele P; Conti C; Rousaki A; Moens L; Realini M; Matousek P
    Anal Chem; 2017 Sep; 89(17):9218-9223. PubMed ID: 28753322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Microspatially Offset Raman Spectroscopy for Noninvasive Imaging of Concealed Texts and Figures Using Raman Signal, Fluorescence Emission, and Overall Spectral Intensity.
    Botteon A; Vermeulen M; Cristina L; Bruni S; Matousek P; Miliani C; Realini M; Angelova L; Conti C
    Anal Chem; 2024 Mar; 96(11):4535-4543. PubMed ID: 38456422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Frontier for Nondestructive Spatial Analysis of Pharmaceutical Solid Dosage Forms: Spatially Offset Low-Frequency Raman Spectroscopy.
    Be Rziņš KR; Fraser-Miller SJ; Gordon KC
    Anal Chem; 2021 Mar; 93(8):3698-3705. PubMed ID: 33590756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy.
    Zini J; Kekkonen J; Kaikkonen VA; Laaksonen T; Keränen P; Talala T; Mäkynen AJ; Yliperttula M; Nissinen I
    J Control Release; 2021 Jun; 334():367-375. PubMed ID: 33930478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2017 Oct; 145():682-691. PubMed ID: 28803207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging.
    Sun Y; Jensen H; Petersen NJ; Larsen SW; Østergaard J
    J Pharm Biomed Anal; 2018 Feb; 150():95-106. PubMed ID: 29216591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Leuprolide Acetate Release from Poly(d,l-lactide-
    Li Z; Mu H; Larsen SW; Jensen H; Østergaard J
    Mol Pharm; 2020 Dec; 17(12):4522-4532. PubMed ID: 33164519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro release studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the subcutis.
    Jensen SS; Jensen H; Møller EH; Cornett C; Siepmann F; Siepmann J; Østergaard J
    Eur J Pharm Sci; 2016 Jan; 81():103-12. PubMed ID: 26478185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating Spatially Offset Low-Frequency Anti-Stokes Raman Spectroscopy (SOLFARS) for Detecting Subsurface Composition below an Emissive Layer: A Proof of Principle Study Using a Model Bilayer System.
    Be Rziņš KR; Mapley JI; Gordon KC; Fraser-Miller SJ
    Mol Pharm; 2022 Nov; 19(11):4311-4319. PubMed ID: 36170046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of implant formation on drug release kinetics of in situ forming implants.
    Suh MS; Kastellorizios M; Tipnis N; Zou Y; Wang Y; Choi S; Burgess DJ
    Int J Pharm; 2021 Jan; 592():120105. PubMed ID: 33232755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of chitosan and polylactic acid based methotrexate intravitreal micro-implants to treat primary intraocular lymphoma: an in vitro study.
    Manna S; Augsburger JJ; Correa ZM; Landero JA; Banerjee RK
    J Biomech Eng; 2014 Feb; 136(2):021018. PubMed ID: 24317155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation and Optimization of Hydrogel Microneedles for Transdermal Delivery of Caffeine.
    Chandran R; Mohd Tohit ER; Stanslas J; Salim N; Tuan Mahmood TM
    Tissue Eng Part C Methods; 2022 Oct; 28(10):545-556. PubMed ID: 35485888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
    Hopkins KA; Vike N; Li X; Kennedy J; Simmons E; Rispoli J; Solorio L
    J Control Release; 2019 Sep; 309():289-301. PubMed ID: 31323243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Stimulated Raman Scattering (SRS) Microscopy Study of the Dissolution of Sustained-Release Implant Formulation.
    Francis AT; Nguyen TT; Lamm MS; Teller R; Forster SP; Xu W; Rhodes T; Smith RL; Kuiper J; Su Y; Fu D
    Mol Pharm; 2018 Dec; 15(12):5793-5801. PubMed ID: 30362772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ex vivo-in vivo comparison of drug penetration analysis by confocal Raman microspectroscopy and tape stripping.
    Krombholz R; Fressle S; Nikolić I; Pantelić I; Savić S; Sakač MC; Lunter D
    Exp Dermatol; 2022 Dec; 31(12):1908-1919. PubMed ID: 36055759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool.
    Realini M; Conti C; Botteon A; Colombo C; Matousek P
    Analyst; 2017 Jan; 142(2):351-355. PubMed ID: 27966679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy.
    Berry ME; McCabe SM; Sloan-Dennison S; Laing S; Shand NC; Graham D; Faulds K
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31613-31624. PubMed ID: 35801671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ Raman spectroscopy for real time detection of cysteine.
    Lomont JP; Smith JP
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121068. PubMed ID: 35276471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.