BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38602871)

  • 1. Protocol for unsupervised inference of cell-cell communication using matrix decomposition.
    Liu Y; Chang X; Liu X
    STAR Protoc; 2024 Jun; 5(2):103006. PubMed ID: 38602871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples.
    Baghdassarian HM; Dimitrov D; Armingol E; Saez-Rodriguez J; Lewis NE
    Cell Rep Methods; 2024 Apr; 4(4):100758. PubMed ID: 38631346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MDIC3: Matrix decomposition to infer cell-cell communication.
    Liu Y; Zhang Y; Chang X; Liu X
    Patterns (N Y); 2024 Feb; 5(2):100911. PubMed ID: 38370122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Annotating cell types in human single-cell RNA-seq data with CellO.
    Bernstein MN; Dewey CN
    STAR Protoc; 2021 Sep; 2(3):100705. PubMed ID: 34458864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TimiGP: An R package to depict the tumor microenvironment from bulk transcriptomics.
    Li C; Zhang J; Cheng C
    STAR Protoc; 2023 Dec; 4(4):102742. PubMed ID: 38019649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol for fast clonal family inference and analysis from large-scale B cell receptor repertoire sequencing data.
    Wang K; Cai L; Wang H; Shan S; Hu X; Zhang J
    STAR Protoc; 2024 Jun; 5(2):102969. PubMed ID: 38502687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of mouse pancreatic tumor for single-cell RNA sequencing and analysis of the data.
    Surumbayeva A; Kotliar M; Gabitova-Cornell L; Kartashov A; Peri S; Salomonis N; Barski A; Astsaturov I
    STAR Protoc; 2021 Dec; 2(4):100989. PubMed ID: 34927097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CPPLS-MLP: a method for constructing cell-cell communication networks and identifying related highly variable genes based on single-cell sequencing and spatial transcriptomics data.
    Zhang T; Wu Z; Li L; Ren J; Zhang Z; Wang G
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for constructing glycan biosynthetic networks using glycowork.
    Lundstrøm J; Thomès L; Bojar D
    STAR Protoc; 2024 Jun; 5(2):102937. PubMed ID: 38630592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol to perform integrative analysis of high-dimensional single-cell multimodal data using an interpretable deep learning technique.
    Zhou M; Zhang H; Bai Z; Mann-Krzisnik D; Wang F; Li Y
    STAR Protoc; 2024 Jun; 5(2):103066. PubMed ID: 38748882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for PPP1R15A-inhibited mouse model establishment with subcutaneous B16F1 tumor and single-cell analysis.
    Wang R; Wang M; Pei S; Zhang Y; Guo S; Guo W; Wu Z; Wang H; Li Y; Zhu Y; Meng LH; Lang J; Jin G; Xiao Y; Hu L; Kong X
    STAR Protoc; 2023 Dec; 4(4):102616. PubMed ID: 37756156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated single-cell sequencing of 5-hydroxymethylcytosine and genomic DNA using scH&G-seq.
    Chialastri A; Wangsanuwat C; Dey SS
    STAR Protoc; 2021 Dec; 2(4):101016. PubMed ID: 34950891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for executing and benchmarking eight computational doublet-detection methods in single-cell RNA sequencing data analysis.
    Xi NM; Li JJ
    STAR Protoc; 2021 Sep; 2(3):100699. PubMed ID: 34382023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SEnSCA: Identifying possible ligand-receptor interactions and its application in cell-cell communication inference.
    Zhou L; Wang X; Peng L; Chen M; Wen H
    J Cell Mol Med; 2024 May; 28(9):e18372. PubMed ID: 38747737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell lineage and communication network inference via optimization for single-cell transcriptomics.
    Wang S; Karikomi M; MacLean AL; Nie Q
    Nucleic Acids Res; 2019 Jun; 47(11):e66. PubMed ID: 30923815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for fast scRNA-seq raw data processing using scKB and non-arbitrary quality control with COPILOT.
    Hsu CW; Shahan R; Nolan TM; Benfey PN; Ohler U
    STAR Protoc; 2022 Dec; 3(4):101729. PubMed ID: 36181683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types.
    Arora JK; Opasawatchai A; Teichmann SA; Matangkasombut P; Charoensawan V
    STAR Protoc; 2023 Sep; 4(3):102387. PubMed ID: 37379219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocols for single-cell RNA-seq and spatial gene expression integration and interactive visualization.
    Sona S; Bradley M; Ting AH
    STAR Protoc; 2023 Mar; 4(1):102047. PubMed ID: 36853708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inference of Ligand-Receptor Pairs from Single-Cell Transcriptomics Data.
    Efremova M; Vento-Tormo R
    Methods Mol Biol; 2021; 2346():1-10. PubMed ID: 33625677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference and analysis of cell-cell communication using CellChat.
    Jin S; Guerrero-Juarez CF; Zhang L; Chang I; Ramos R; Kuan CH; Myung P; Plikus MV; Nie Q
    Nat Commun; 2021 Feb; 12(1):1088. PubMed ID: 33597522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.