These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38602913)

  • 21. Single-bubble EHD behavior into water two-phase flow under electric-field stress and gravitational acceleration using PFM.
    Mianmahale MA; Mehrabani-Zeinabad A; Zare MH; Ghadiri M
    NPJ Microgravity; 2021 Feb; 7(1):6. PubMed ID: 33602933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activating Bubble's Escape, Coalescence, and Departure under an Electric Field Effect.
    Yan R; Pham R; Chen CL
    Langmuir; 2020 Dec; 36(51):15558-15571. PubMed ID: 33332129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bubble formation in a quiescent pool of gold nanoparticle suspension.
    Vafaei S; Wen D
    Adv Colloid Interface Sci; 2010 Aug; 159(1):72-93. PubMed ID: 20591394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bubble energy generator.
    Yan X; Xu W; Deng Y; Zhang C; Zheng H; Yang S; Song Y; Li P; Xu X; Hu Y; Zhang L; Yang Z; Wang S; Wang Z
    Sci Adv; 2022 Jun; 8(25):eabo7698. PubMed ID: 35749507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance Enhancement of Electrocatalytic Hydrogen Evolution through Coalescence-Induced Bubble Dynamics.
    Bashkatov A; Park S; Demirkır Ç; Wood JA; Koper MTM; Lohse D; Krug D
    J Am Chem Soc; 2024 Apr; 146(14):10177-10186. PubMed ID: 38538570
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bubble growth analysis during subcooled boiling experiments on-board the international space station: Benchmark image analysis.
    Oikonomidou O; Evgenidis S; Argyropoulos C; Zabulis X; Karamaoynas P; Raza MQ; Sebilleau J; Ronshin F; Chinaud M; Garivalis AI; Kostoglou M; Sielaff A; Schinnerl M; Stephan P; Colin C; Tadrist L; Kabov O; Di Marco P; Karapantsios T
    Adv Colloid Interface Sci; 2022 Oct; 308():102751. PubMed ID: 36027672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cavity deformation and bubble entrapment during the impact of droplets on a liquid pool.
    Xu Z; Wang T; Che Z
    Phys Rev E; 2022 Nov; 106(5-2):055108. PubMed ID: 36559405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Revisiting the supplementary relationship of dynamic contact angles measured by sessile-droplet and captive-bubble methods: Role of surface roughness.
    Sarkar S; Roy T; Roy A; Moitra S; Ganguly R; Megaridis CM
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):690-697. PubMed ID: 32814192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of Surface Wettability on Microbubble Formation.
    Wesley DJ; Smith RM; Zimmerman WB; Howse JR
    Langmuir; 2016 Feb; 32(5):1269-78. PubMed ID: 26754879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow Boiling Heat Transfer Enhancement Using Tuned Geometrical Contact-Line Pinning.
    Salmean C; Qiu H
    ACS Appl Mater Interfaces; 2023 May; 15(19):23844-23859. PubMed ID: 37130321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Line tension and morphology of a droplet and a bubble attached to the inner wall of a spherical cavity.
    Iwamatsu M
    J Chem Phys; 2016 Apr; 144(14):144704. PubMed ID: 27083742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous motion of particles attached to cavitation bubbles.
    Xu F; Liu Y; Chen M; Luo J; Bai L
    Ultrason Sonochem; 2024 Jul; 107():106888. PubMed ID: 38697875
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of the attachment behavior of hydrophobic colloidal particles onto a bubble surface.
    Arai N; Watanabe S; Miyahara MT; Yamamoto R; Hampel U; Lecrivain G
    Soft Matter; 2020 Jan; 16(3):695-702. PubMed ID: 31815273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bubble-Induced Rupture of Droplets on Hydrophobic and Lubricant-Impregnated Surfaces.
    Mullagura HN; Dash S
    Langmuir; 2020 Aug; 36(30):8858-8864. PubMed ID: 32614589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio.
    Liang H; Liu H; Chai Z; Shi B
    Phys Rev E; 2019 Jun; 99(6-1):063306. PubMed ID: 31330728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale Study of Bubble Nucleation on a Cavity Substrate Using Molecular Dynamics Simulation.
    Chen Y; Li J; Yu B; Sun D; Zou Y; Han D
    Langmuir; 2018 Nov; 34(47):14234-14248. PubMed ID: 30398360
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultraviolet-Driven Janus Foams with Wetting Gradients: Unidirectional Penetration Control for Underwater Bubbles.
    Dai X; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42734-42743. PubMed ID: 36070967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of Contact Line (Pinning) Forces on Bubble Blockage in Microchannels.
    Mohammadi M; Sharp KV
    J Fluids Eng; 2015 Mar; 137(3):0312081-312087. PubMed ID: 25729115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Soft wetting: Substrate softness- and time-dependent droplet/bubble adhesion.
    Chen K; Li J; Wei C; Oron A; Shan Y; Jiang Y
    J Colloid Interface Sci; 2024 May; 662():87-98. PubMed ID: 38340517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.