BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

34 related articles for article (PubMed ID: 38603616)

  • 1. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving replicability in single-cell RNA-Seq cell type discovery with Dune.
    Roux de Bézieux H; Street K; Fischer S; Van den Berge K; Chance R; Risso D; Gillis J; Ngai J; Purdom E; Dudoit S
    BMC Bioinformatics; 2024 May; 25(1):198. PubMed ID: 38789920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. scAMAC: self-supervised clustering of scRNA-seq data based on adaptive multi-scale autoencoder.
    Tan D; Yang C; Wang J; Su Y; Zheng C
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering.
    Gao Q; Ai Q
    Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MuDCoD: multi-subject community detection in personalized dynamic gene networks from single-cell RNA sequencing.
    Şapcı AOB; Lu S; Yan S; Ay F; Tastan O; Keleş S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37740957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring gene regulatory networks from single-cell transcriptomics based on graph embedding.
    Gan Y; Yu J; Xu G; Yan C; Zou G
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38810116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCSMD: Single Cell Consistent Clustering based on Spectral Matrix Decomposition.
    Jia R; Ren YZ; Li PN; Gao R; Zhang YS
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38855914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SifiNet: a robust and accurate method to identify feature gene sets and annotate cells.
    Gao Q; Ji Z; Wang L; Owzar K; Li QJ; Chan C; Xie J
    Nucleic Acids Res; 2024 May; 52(9):e46. PubMed ID: 38647069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved integration of single-cell transcriptome and surface protein expression by LinQ-View.
    Li L; Dugan HL; Stamper CT; Lan LY; Asby NW; Knight M; Stovicek O; Zheng NY; Madariaga ML; Shanmugarajah K; Jansen MO; Changrob S; Utset HA; Henry C; Nelson C; Jedrzejczak RP; Fremont DH; Joachimiak A; Krammer F; Huang J; Khan AA; Wilson PC
    Cell Rep Methods; 2021 Aug; 1(4):100056. PubMed ID: 35475142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impeller: a path-based heterogeneous graph learning method for spatial transcriptomic data imputation.
    Duan Z; Riffle D; Li R; Liu J; Min MR; Zhang J
    Bioinformatics; 2024 Jun; 40(6):. PubMed ID: 38806165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CellMarkerPipe: cell marker identification and evaluation pipeline in single cell transcriptomes.
    Jia Y; Ma P; Yao Q
    Sci Rep; 2024 Jun; 14(1):13151. PubMed ID: 38849445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. scVSC: Deep variational subspace clustering for single-cell transcriptome data.
    Wang Z; Wang H; Zhao J; Xia J; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2024 May; PP():. PubMed ID: 38801694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIMBA: single-cell embedding along with features.
    Chen H; Ryu J; Vinyard ME; Lerer A; Pinello L
    Nat Methods; 2024 Jun; 21(6):1003-1013. PubMed ID: 37248389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive survey of dimensionality reduction and clustering methods for single-cell and spatial transcriptomics data.
    Sun Y; Kong L; Huang J; Deng H; Bian X; Li X; Cui F; Dou L; Cao C; Zou Q; Zhang Z
    Brief Funct Genomics; 2024 Jun; ():. PubMed ID: 38860675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scDAC: deep adaptive clustering of single-cell transcriptomic data with coupled autoencoder and Dirichlet process mixture model.
    An S; Shi J; Liu R; Chen Y; Wang J; Hu S; Xia X; Dong G; Bo X; He Z; Ying X
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38603616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DIMM-SC: a Dirichlet mixture model for clustering droplet-based single cell transcriptomic data.
    Sun Z; Wang T; Deng K; Wang XF; Lafyatis R; Ding Y; Hu M; Chen W
    Bioinformatics; 2018 Jan; 34(1):139-146. PubMed ID: 29036318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning and statistical methods for clustering single-cell RNA-sequencing data.
    Petegrosso R; Li Z; Kuang R
    Brief Bioinform; 2020 Jul; 21(4):1209-1223. PubMed ID: 31243426
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.