BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38603814)

  • 1. Simultaneous exposure to nanoplastics and cadmium mitigates microalgae cellular toxicity: Insights from molecular simulation and metabolomics.
    Li H; Lin L; Liu H; Deng X; Wang L; Kuang Y; Lin Z; Liu P; Wang Y; Xu Z
    Environ Int; 2024 Apr; 186():108633. PubMed ID: 38603814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity effects of microplastics and nanoplastics with cadmium on the alga Microcystis aeruginosa.
    Wang Q; Wang J; Chen H; Zhang Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17360-17373. PubMed ID: 36194332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced microalgal toxicity due to polystyrene nanoplastics and cadmium co-exposure: From the perspective of physiological and metabolomic profiles.
    Cao J; Liao Y; Yang W; Jiang X; Li M
    J Hazard Mater; 2022 Apr; 427():127937. PubMed ID: 34863563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure of microalgae Euglena gracilis to polystyrene microbeads and cadmium: Perspective from the physiological and transcriptional responses.
    Liao Y; Jiang X; Xiao Y; Li M
    Aquat Toxicol; 2020 Nov; 228():105650. PubMed ID: 33035767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of graphene oxide on the toxicity of polystyrene nanoplastics to the marine microalgae Picochlorum sp.
    Yesilay G; Hazeem L; Bououdina M; Cetin D; Suludere Z; Barras A; Boukherroub R
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75870-75882. PubMed ID: 35661310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoplastics increase algal absorption and toxicity of Cd through alterations in cell wall structure and composition.
    Zhang S; Sun Z; Zheng T; He C; Lin D
    Water Res; 2024 May; 254():121394. PubMed ID: 38442610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity effects of polystyrene nanoplastics and arsenite on Microcystis aeruginosa.
    Wang Q; Liu W; Zeb A; Lian Y; Shi R; Li J; Zheng Z
    Sci Total Environ; 2023 May; 874():162496. PubMed ID: 36863597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics.
    Wang J; Tian Q; Zhou H; Kang J; Yu X; Qiu G; Shen L
    Sci Total Environ; 2024 Mar; 916():170278. PubMed ID: 38262539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High salinity acclimatization alleviated cadmium toxicity in Dunaliella salina: Transcriptomic and physiological evidence.
    Zhu QL; Bao J; Liu J; Zheng JL
    Aquat Toxicol; 2020 Jun; 223():105492. PubMed ID: 32361487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity interaction of polystyrene nanoplastics with sulfamethoxazole on the microalgae Chlamydomonas reinhardtii: A closer look at effect of light availability.
    Wang C; He M; Wu C; Chen Z; Jiang L; Wang C
    J Environ Manage; 2023 Aug; 340():117969. PubMed ID: 37084645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species mediated extracellular polymeric substances production assisting the recovery of Thalassiosira pseudonana from polystyrene micro and nanoplastics exposure.
    Zhang B; Wang Z; Li D; Li L; Zhao Y; Tang X; Zhao Y
    Environ Pollut; 2024 May; 348():123850. PubMed ID: 38548148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity Effects of Polystyrene Nanoplastics with Different Sizes on Freshwater Microalgae
    Xiang Q; Zhou Y; Tan C
    Molecules; 2023 May; 28(9):. PubMed ID: 37175372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanism for combined toxicity of micro(nano)plastics and carbon nanofibers to freshwater microalgae Chlorella pyrenoidosa.
    Lu X; Wang Z
    Environ Pollut; 2024 Mar; 344():123403. PubMed ID: 38244907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of transport and toxicity response of Chlorella sorokiniana to polystyrene nanoplastics.
    Xu M; Zhu F; Yang Y; Liu M; Li X; Jiang Y; Feng L; Duan J; Wang W; Yuan X; Zhang X
    Ecotoxicol Environ Saf; 2024 Jan; 270():115901. PubMed ID: 38157799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovering Nature's shield: Metabolomic insights into green zinc oxide nanoparticles Safeguarding Brassica parachinensis L. from cadmium stress.
    Ali S; Bai Y; Zhang J; Zada S; Khan N; Hu Z; Tang Y
    Plant Physiol Biochem; 2024 Jan; 206():108126. PubMed ID: 38147709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxic effects of polystyrene nanoplastics and polycyclic aromatic hydrocarbons (chrysene and fluoranthene) on the growth and physiological characteristics of Chlamydomonas reinhardtii.
    Narayanan G; Talib M; Singh N; Darbha GK
    Aquat Toxicol; 2024 Mar; 268():106838. PubMed ID: 38295601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid.
    Hanachi P; Khoshnamvand M; Walker TR; Hamidian AH
    Aquat Toxicol; 2022 Apr; 245():106123. PubMed ID: 35183843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and mechanism of nanoplastics to phytoplankton in high-latitude aquatic ecosystems of Canadian prairie: Effects of multiple environmental factors.
    Gao S; Huang G; Zhang P; Xin X; Yin J; Han D; Rosendahl S; Read S
    Sci Total Environ; 2023 Oct; 893():164676. PubMed ID: 37301403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa.
    Yang W; Gao P; Li H; Huang J; Zhang Y; Ding H; Zhang W
    Sci Total Environ; 2021 Aug; 783():146919. PubMed ID: 33866172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diminishing bioavailability and toxicity of P25 TiO
    Thiagarajan V; M P; S A; R S; N C; G K S; Mukherjee A
    Chemosphere; 2019 Oct; 233():363-372. PubMed ID: 31176899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.